Inf-sup condition and locking: Understanding and circumventing.

Stokes, Laplacian, bi-Laplacian, Kirchhoff-Love and Mindlin-Reissner locking type, boundary conditions

Gilles Leborgne
Isima, University of Clermont-Ferrand, France

April 22, 2020

Abstract

The inf-sup condition, also called the Ladyzhenskaya-Babuška-Brezzi (LBB) condition, ensures the well-posedness of a saddle point problem, relative to a partial differential equation. Discretization by the finite element method gives the discrete problem which must satisfy the discrete inf-sup condition. But, depending on the choice of finite elements, the discrete condition may fail. This paper attempts to explain why it fails from an engineer's perspective, and reviews current methods to work around this failure. The last part recalls the mathematical bases.

Contents

I Introduction 4
1 The inf-sup condition, what is that ? 4
1.1 The constrained problem under concern 4
1.2 The control on p to get a well-posed problem, and inf-sup 4
1.3 The loss of control on p for the discrete problem 5
1.4 Where is the problem? 5
II Examples and preventions 5
2 Stokes model 5
2.1 A first model 5
2.2 Constrained associated problem 6
3 Numerical approximation of the Stokes model 6
3.1 Approximation 6
3.2 Projections (finite element method) 6
3.3 Matrix representation 7
3.4 The problematic pressure 7
3.5 What has been lost. 8
3.6 ... and a reintroduction of the loss 8
3.7 Brezzi and Pitkäranta's method 9
3.8 Hughes, Franca and Balestra's method 9
3.9 Douglas and Wang's method 9
4 Laplacian (harmonic problem) 10
4.1 A dirichlet problem 10
4.2 A Neumann problem 10
5 Bilaplacian (biharmonic problem) 12
5.1 Problem 12
5.2 Introduction of $\Delta \underline{p}$ 12
5.3 Introduction of $\operatorname{grad} p$ 12
5.3.1 Weak form 12
5.3.2 A first constrained formulation 13
5.3.3 A second constrained formulation 13
5.3.4 A third constrained formulation 14
5.3.5 A fourth constrained formulation 15
6 Locking 16
6.1 A typical situation 16
6.2 The coercivity constant for p 17
6.3 The discrete problem 17
6.4 An optimal correction 18
6.5 Classical treatment of the locking 18
6.5.1 Initial problem 18
6.5.2 discrete problem 19
7 Weak Dirichlet condition 20
7.1 Initial problem 20
7.2 Mixed problem 20
7.3 Discrete problem 21
7.4 Finite elements $P_{k}-C^{0}$: unstable 21
7.4.1 The discrete inf-sup condition 21
7.4.2 Barbosa et Hughes 21
7.4.3 Multiplier elimination: Nitsche method 22
III Theory 23
8 The open mapping theorem 23
8.1 Notations 23
8.2 The open mapping theorem 24
8.3 Quotient space $E / \operatorname{Ker}(T)$, and open mapping theorem 25
8.4 The inf-sup condition 26
9 Some spaces and their duals 27
9.1 Divergence, Gradient, Rotationnal 27
9.2 Some Hilbert spaces 27
9.3 Some sup-spaces 27
9.4 Trace operator γ_{0} and the Hilbert space $H^{\frac{1}{2}}(\Gamma)$ 28
9.5 Some other trace operators 29
9.6 Some Dual spaces 29
9.7 Dual of $H^{1}(\Omega)$ and $H^{\text {div }}(\Omega)$ (characterizations) 30
9.8 Kernel of the trace operators 31
9.9 Poincaré-Friedrichs 31
$9.10 L^{2}(\Omega)^{n}$ Decomposition (Helmholtz) 31
10 A surjectivity of the gradient operator 32
10.1 The theorem 32
10.2 Steps for the proof 33
10.2.1 Equivalent norms in $H^{-1}(\Omega)$ 33
10.2.2 Rellich theorem $L^{2}(\Omega) \rightarrow H^{-1}(\Omega)$ 33
10.2.3 Petree-Tartar compactness theorem 34
10.2.4 The range of $\operatorname{grad}: L^{2}(\Omega) \rightarrow H^{-1}(\Omega)^{n}$ is closed 34
11 The closed range theorem 34
11.0.1 The closed range theorem 35
12 A well-posed mixed problem 37
12.1 Notations 37
12.2 The mixed problem 37
12.3 The inf-sup conditions 38
12.4 The theorem for mixed problem 38
12.5 The saddle point problem 39
13 The surjectivites of the divergence operator 39
13.1 The divergence operator div: $H^{\operatorname{div}}(\Omega) \rightarrow L^{2}(\Omega)$ is surjective 39
13.2 The divergence operator div: $H_{0}^{\operatorname{div}}(\Omega) \rightarrow L_{0}^{2}(\Omega)$ is surjective 40
13.3 The divergence operator div : $L^{2}(\Omega)^{n} \rightarrow H^{-1}(\Omega)$ is surjective 40
13.4 The divergence operator div : $H_{0}^{1}(\Omega)^{n} \rightarrow L_{0}^{2}(\Omega)$ is surjective 40
A Singular value decomposition (SVD) 42
B Application: The discrete inf-sup condition 43

Part I

Introduction

1 The inf-sup condition, what is that ?

1.1 The constrained problem under concern

Let $\left(V,(\cdot, \cdot)_{V}\right)$ be a Hilbert space and $\left(Q,\|\cdot\|_{Q}\right)$ be a Banach space. Let $V^{\prime}=\mathcal{L}(V ; \mathbb{R})$ and $Q^{\prime}=$ $\mathcal{L}(Q ; \mathbb{R})$ be the associated dual spaces (spaces of the linear continuous forms). Let $f \in V^{\prime}$ and $g \in Q^{\prime}$ be linear continuous forms, and let $a(\cdot, \cdot): V \times V \rightarrow \mathbb{R}$ and $b(\cdot, \cdot): V \times Q \rightarrow \mathbb{R}$ be bilinear continuous forms.

The problem under concern is: Find $(u, p) \in V \times Q$ s.t.

$$
\left\{\begin{array}{ll}
a(u, v)+b(v, p) & =\langle f, v\rangle_{V^{\prime}, V}, \tag{1.1}\\
b(u, q) & =\langle g \in q, \\
& \forall v\rangle_{Q^{\prime}, Q},
\end{array} \quad \forall q \in Q .\right.
$$

E.g., with Ω an open regular bounded set in \mathbb{R}^{n} and $L_{0}^{2}(\Omega) \simeq L^{2}(\Omega) / \mathbb{R}$ (that is the space of L^{2} functions defined up to a constant), find $(\vec{u}, p) \in H_{0}^{1}(\Omega)^{n} \times L_{0}^{2}(\Omega)$ s.t.

$$
\left\{\begin{array}{l}
(\operatorname{grad} \vec{u}, \operatorname{grad} \vec{v})_{L^{2}}-(p, \operatorname{div} \vec{v})_{L^{2}}=\langle\vec{f}, \vec{v}\rangle_{H^{-1}, H_{0}^{1}}, \quad \forall \vec{v} \in H_{0}^{1}(\Omega)^{n} \tag{1.2}\\
-(\operatorname{div} \vec{u}, q)_{L^{2}}=0, \quad \forall q \in L_{0}^{2}(\Omega)
\end{array}\right.
$$

Let $A \in \mathcal{L}\left(V ; V^{\prime}\right), B \in \mathcal{L}\left(V ; Q^{\prime}\right)$ and $B^{t} \in \mathcal{L}\left(Q, V^{\prime}\right)$ be the associated linear continuous mapping (bounded operators) given by

$$
\begin{equation*}
\langle A u, v\rangle_{V^{\prime}, V}=a(u, v), \quad\langle B v, p\rangle_{Q^{\prime}, Q}=b(v, p)=\left\langle B^{t} p, v\right\rangle_{V^{\prime}, V} . \tag{1.3}
\end{equation*}
$$

Then (1.1) also reads

$$
\left\{\begin{align*}
A u+B^{t} p & =f \in V^{\prime} \tag{1.4}\\
B u & =g \in Q^{\prime}
\end{align*}\right.
$$

the equation $B u=g$ being the constraint. E.g., find $(\vec{u}, p) \in H_{0}^{1}(\Omega)^{n} \times L_{0}^{2}(\Omega)$ s.t.

$$
\left\{\begin{align*}
-\Delta \vec{u}+\operatorname{grad} p & =\vec{f} \tag{1.5}\\
\operatorname{div} \vec{u} & =0
\end{align*}\right.
$$

1.2 The control on p to get a well-posed problem, and inf-sup

The simplest numerical finite element simulations show non admissible results for p (the pressure) in (1.2). And p being only present in (1.2) 1 , we need to study B^{t}, cf. (1.4). The needed result will be the closure of $\operatorname{Im}\left(B^{t}\right)$ in V^{\prime} : In that case the open mapping theorem gives the control on p thanks to:

$$
\begin{equation*}
\exists \beta>0, \quad \forall p \in Q, \quad\left\|B^{t} p\right\|_{V^{\prime}} \geq \beta\|p\|_{Q / \operatorname{Ker}\left(B^{t}\right)} \tag{1.6}
\end{equation*}
$$

also written as the "inf-sup condition": $\exists \beta>0, \inf _{p \in Q} \sup _{v \in V} \frac{|b(v, p)|}{\|v\|_{V}\|p\|_{Q / \operatorname{Ker}\left(B^{t}\right)}} \geq \beta$, since $\left\|B^{t} p\right\|_{V^{\prime}}=$ $\sup _{v \in V} \frac{\left|\left\langle B^{t} p, v\right\rangle_{V^{\prime}, V}\right|}{\|v\|_{V}}=\sup _{v \in V} \frac{|b(v, p)|}{\|v\| \|_{V}}$.
E.g. for (1.2), with $B^{t}=\operatorname{grad}: L_{0}^{2}(\Omega) \rightarrow H^{-1}(\Omega)^{n}$, we have $\operatorname{Im}\left(B^{t}\right)$ closed in $H^{-1}(\Omega)^{n}$ (this is "the" difficult theorem to establish, see next §), thus

$$
\begin{equation*}
\exists \beta>0, \forall p \in L^{2}(\Omega),\|\overrightarrow{\operatorname{rad} p}\|_{H^{-1}} \geq \beta\|p\|_{L_{0}^{2}} \tag{1.7}
\end{equation*}
$$

Which can be written as the "inf-sup condition": $\exists \beta>0, \inf _{p \in L^{2}(\Omega)} \sup _{v \in H_{0}^{1}(\Omega)^{n}} \frac{\left|(\operatorname{div} \vec{v}, p)_{L^{2}}\right|}{\|v\|_{H_{0}^{1}}| | p \|_{L_{0}^{2}}} \geq \beta$.
And we get the theorem: The problem (1.2) is well-posed, that is, the solution (u, p) exists, is unique, and depends continuously on f and g. See (12.14).

Remark: Thanks to the closed range theorem 11.2, the closure of $\operatorname{Im}\left(B^{t}\right)$ is equivalent to the closure of $\operatorname{Im}(B)$ (under usual hypotheses). This result is needed to get the existence of u.

1.3 The loss of control on p for the discrete problem

Let $V_{h} \subset V$ and $Q_{h} \subset Q$ be finite dimensional subspaces (conform finite elements to simplify). The discretization of (1.1) (for computation purposes) reads: Find $\left(u_{h}, p_{h}\right) \in V_{h} \times Q_{h}$ s.t.

$$
\left\{\begin{array}{lll}
a\left(u_{h}, v_{h}\right)+b\left(v_{h}, p_{h}\right) & =\left\langle f, v_{h}\right\rangle_{V^{\prime}, V}, & \forall v_{h} \in V_{h} \tag{1.8}\\
b\left(u_{h}, q_{h}\right) & =\left\langle g, q_{h}\right\rangle_{Q^{\prime}, Q}, &
\end{array} \quad \forall q_{h} \in Q_{h} .\right.
$$

E.g., with $V_{h} \subset H_{0}^{1}(\Omega)^{n}, Q_{h} \subset L_{0}^{2}(\Omega)$, and $\vec{f} \in L^{2}(\Omega)^{n}$,

$$
\left\{\begin{align*}
\left(\operatorname{grad} \vec{u}_{h}, \operatorname{grad} \vec{v}_{h}\right)_{L^{2}}-\left(p_{h}, \operatorname{div} \vec{v}_{h}\right)_{L^{2}} & =\left(\vec{f}, \vec{v}_{h}\right)_{L^{2}}, \quad \forall \vec{v}_{h} \in V_{h}, \tag{1.9}\\
-\left(\operatorname{div} \vec{u}_{h}, q_{h}\right)_{L^{2}} & =0, \quad \forall q_{h} \in Q_{h}
\end{align*}\right.
$$

The h-discrete inf-sup condition is

$$
\begin{equation*}
\exists \beta_{h}>0, \forall p_{h} \in Q_{h}, \quad\left\|B_{h}^{t} p_{h}\right\|_{V^{\prime}} \geq \beta_{h}\left\|p_{h}\right\|_{Q_{h} / \operatorname{Ker}\left(B^{t}\right)} \tag{1.10}
\end{equation*}
$$

And β_{h} should satisfy $\beta_{h}>\gamma$ is satisfied for some $\gamma>0$: we get the so-called discrete inf-sup condition:

$$
\begin{equation*}
\exists \gamma>0, \forall h>0, \forall p_{h} \in Q_{h}, \quad\left\|B_{h}^{t} p_{h}\right\|_{V^{\prime}} \geq \gamma\left\|p_{h}\right\|_{Q_{h} / \operatorname{Ker}\left(B^{t}\right)} \tag{1.11}
\end{equation*}
$$

Fortin [17] gives a general useful method to check if the discrete inf-sup condition is satisfied.
Unfortunately, in many situations the stability condition (1.11) is not satisfied. E.g. P_{1}-continuous finite elements for both the velocity and pressure.

The associated matrix problem relative to (1.8) reads: Find $\left(U_{h}, P_{h}\right) \in \mathbb{R}^{n_{V}} \times \mathbb{R}^{n_{Q}}$ s.t. :

$$
\left(\begin{array}{cc}
{\left[A_{h}\right]} & {\left[B_{h}\right]^{T}} \tag{1.12}\\
{\left[B_{h}\right]} & 0
\end{array}\right)\binom{\left[U_{h}\right]}{\left[P_{h}\right]}=\binom{\left[F_{h}\right]}{\left[G_{h}\right]},
$$

$\left[B_{h}\right]^{T}$ being $\left[B_{h}\right]$ transposed. And if (1.11) is not satisfied then the matrix $\left(\begin{array}{cc}{\left[A_{h}\right]} \\ {\left[B_{h}\right]} & {\left[B_{h}\right]^{T}} \\ {[0]}\end{array}\right)$ is non invertible for some h.

1.4 Where is the problem?

E.g., with (1.9) and continuous P_{1}-continuous finite elements for \vec{v}_{h} and p_{h} we have

$$
\begin{equation*}
b\left(\vec{v}_{h}, p_{h}\right)=\left(\overrightarrow{\operatorname{gad}} p_{h}, \vec{v}_{h}\right)_{L^{2}}=\left(\Pi_{V_{h}} \operatorname{grad} p_{h}, \vec{v}_{h}\right)_{L^{2}} \tag{1.13}
\end{equation*}
$$

 and $\Pi_{V_{h}}$ is the projection on continuous P_{1} functions.

This projection $\Pi_{V_{h}}$, as any projection, looses information: Here we would like to consider grad p_{h} (to control p_{h}), but (1.13) tell us that only $\Pi_{V_{h}}$ grad p_{h} is taken into account (is computed): Since grad $p_{h}=$ $\Pi_{V_{h}} \operatorname{grad} p_{h}+\left(\underset{\operatorname{grad} p_{h}}{ }-\Pi_{V_{h}} \operatorname{grad} p_{h}\right)$, we have lost $\operatorname{grad} p_{h}-\Pi_{V_{h}} \operatorname{grad} p_{h}$. And, e.g. with P_{1}-continuous finite elements for \vec{v}_{h} and p_{h}, if nothing is done then the computation fails to give a good result (and it get worse as $h \rightarrow 0$).

To recover a well-posed problem, the missing term grad $p_{h}-\Pi_{V_{h}} \operatorname{grad} p_{h}$ can be reintroduced, see (3.13), and we then get an optimal result (e.g., order h for convergence for P_{1}-continuous finite elements).

Part II

Examples and preventions

2 Stokes model

2.1 A first model

Let Ω be a bounded open set. Let div : $H_{0}^{1}(\Omega)^{n} \rightarrow L_{0}^{2}(\Omega)$ with $(\cdot, \cdot)_{H_{0}^{1}}=(\operatorname{grad}(.), \operatorname{grad}(.))_{L^{2}}$, and let

$$
\begin{equation*}
V=\left\{\vec{v} \in H_{0}^{1}(\Omega)^{n}: \operatorname{div} \vec{v}=0\right\} . \tag{2.1}
\end{equation*}
$$

Problem (homogeneous Dirichlet type): for $\vec{f} \in H^{-1}(\Omega)^{n}$, find $\vec{u} \in H_{0}^{1}(\Omega)$ s.t.

$$
\begin{equation*}
-\Delta \vec{u}=\vec{f} \tag{2.2}
\end{equation*}
$$

Associated weak problem : find $\vec{u} \in V$ s.t.

$$
\begin{equation*}
(\operatorname{grad} \vec{u}, \operatorname{grad} \vec{v})_{L^{2}}=(\vec{f}, \vec{v})_{L^{2}}, \quad \forall \vec{v} \in H_{0}^{1}(\Omega) \tag{2.3}
\end{equation*}
$$

The Lax-Milgram gives the well-posedness in $\left(H_{0}^{1}(\Omega),(\cdot, \cdot)_{H_{0}^{1}}\right)$.
The optimized associated problem is: Find $\vec{u} \in H_{0}^{1}(\Omega)$ realizing the minimum of

$$
\begin{equation*}
J(\vec{v}):=\frac{1}{2}\|\operatorname{grad} \vec{v}\|_{L^{2}}^{2}-(\vec{f}, \vec{v})_{L^{2}} \tag{2.4}
\end{equation*}
$$

2.2 Constrained associated problem

The constraint $\operatorname{div} \vec{u}=0$ is imposed with a Lagrangian multiplier p : The problem (2.2) is transformed into: Find $(\vec{u}, p) \in H_{0}^{1}(\Omega) \times L_{0}^{2}(\Omega)$ s.t.

$$
\left\{\begin{array}{l}
(\operatorname{grad} \vec{u}, \operatorname{grad} \vec{v})_{L^{2}}-(p, \operatorname{div} \vec{v})_{L^{2}}=(\vec{f}, \vec{v})_{L^{2}}, \quad \forall \vec{v} \in H_{0}^{1}(\Omega)^{n}, \tag{2.5}\\
-(\operatorname{div} \vec{u}, q)_{L^{2}}=0, \quad \forall q \in L_{0}^{2}(\Omega)
\end{array}\right.
$$

We have obtained (1.1) with $V=H_{0}^{1}(\Omega)^{n}, Q=L_{0}^{2}(\Omega), g=0, B=\operatorname{div}: H_{0}^{1}(\Omega)^{n} \rightarrow L_{0}^{2}(\Omega)$ and

$$
\left\{\begin{array}{l}
a(\vec{u}, \vec{v})=(\operatorname{grad} \vec{u}, \operatorname{grad} \vec{v})_{L^{2}} \quad \operatorname{sur} H_{0}^{1}(\Omega)^{n} \times H_{0}^{1}(\Omega)^{n} \tag{2.6}\\
b(\vec{v}, q)=-(\operatorname{div} \vec{v}, q)_{L^{2}} \quad \text { sur } H_{0}^{1}(\Omega)^{n} \times L_{0}^{2}(\Omega)
\end{array}\right.
$$

Since $B \underset{\rightarrow}{=} \operatorname{div}: H_{0}^{1}(\Omega) \rightarrow L_{0}^{2}(\Omega), \operatorname{Ker} B=V, a(\cdot, \cdot)$ is coercive on $\operatorname{Ker}(B)$ (it is on $\left.H_{0}^{1}(\Omega)^{n}\right)$, and $B^{t}=\overrightarrow{\operatorname{grad}}: L^{2}(\Omega) \rightarrow H^{-1}(\Omega)^{n}$ is surjective, cf. theorem 10.1 the theorem 12.1 applies, and the problem (2.5) is well-posed.

The associated weak problem reads: Find $(\vec{u}, p) \in H_{0}^{1}(\Omega) \times L_{0}^{2}(\Omega)$ s.t.

$$
\left\{\begin{array}{l}
-\Delta \vec{u}+\operatorname{grad} p=\vec{f} \in H^{-1}(\Omega) \tag{2.7}\\
\operatorname{div} \vec{u}=0
\end{array}\right.
$$

The associated Lagrangian reads, find the saddle point in $H_{0}^{1}(\Omega)^{n} \times L_{0}^{2}(\Omega)$ of

$$
\begin{equation*}
\mathcal{L}(\vec{v}, q)=\frac{1}{2}\|\operatorname{grad} \vec{v}\|_{L^{2}}^{2}-(q, \operatorname{div} \vec{v})_{L^{2}}-(\vec{f}, \vec{v})_{L^{2}} \tag{2.8}
\end{equation*}
$$

3 Numerical approximation of the Stokes model

3.1 Approximation

Let $V_{h} \subset H_{0}^{1}(\Omega)$ and $Q_{h} \subset L_{0}^{2}(\Omega)$ (conform approximation to simplify) be finite dimension subspaces. The discretization of (2.5) is: Find $\vec{u}_{h} \in\left(V_{h}\right)^{n}$ and $p_{h} \in Q_{h}$ s.t.

$$
\left\{\begin{array}{l}
\left(\operatorname{grad} \vec{u}_{h}, \operatorname{grad} \vec{v}_{h}\right)_{L^{2}}-\left(p_{h}, \operatorname{div} \vec{v}_{h}\right)_{L^{2}}=\left(\vec{f}, \vec{v}_{h}\right)_{L^{2}}, \quad \forall \vec{v}_{h} \in\left(V_{h}\right)^{n}, \tag{3.1}\\
\left(\operatorname{div} \vec{u}_{h}, q_{h}\right)_{L^{2}}=0, \quad \forall q_{h} \in Q_{h}
\end{array}\right.
$$

3.2 Projections (finite element method)

If X_{h} is a subspace in $L^{2}(\Omega)$, let $\Pi_{X_{h}}:\left\{\begin{aligned} L^{2}(\Omega) & \rightarrow X_{h} \\ f & \rightarrow \Pi_{X_{h}} f\end{aligned}\right\}$ be the $(\cdot, \cdot)_{L^{2} \text {-orthogonal projection }}$ on X_{h}, that is,

$$
\begin{equation*}
\forall f \in L^{2}(\Omega), \quad\left(\Pi_{X_{h}} f, x_{h}\right)_{L^{2}}=\left(f, x_{h}\right)_{L^{2}}, \quad \forall x_{h} \in X_{h} \tag{3.2}
\end{equation*}
$$

E.g., if $X_{h}=P_{1}$ then $\Pi_{P_{1}} f \in P_{1}$ is the best approximation P_{1} of f for the $(\cdot, \cdot)_{L^{2}}$ inner product. Similar notation for X_{h} a subspace in $L^{2}(\Omega)^{n}$.

Let

$$
{\underset{\operatorname{grad}}{h}} \stackrel{\text { def }}{=} \Pi_{V_{h}} \circ \overrightarrow{\operatorname{grad}}:\left\{\begin{align*}
L^{2}(\Omega) & \rightarrow V_{h} \tag{3.3}\\
p & \rightarrow \operatorname{grad}_{h} p=\Pi_{V_{h}}(\overrightarrow{\operatorname{grad} p}) .
\end{align*}\right.
$$

So, $\operatorname{grad}_{h} p$ is characterized by $\left(\operatorname{grad}_{h} p, \vec{v}_{h}\right)_{L^{2}}=\left(\underset{\operatorname{grad}}{ } p, \vec{v}_{h}\right)_{L^{2}}$ pour tout $\vec{v}_{h} \in V_{h}$. And (3.1) reads

$$
\left\{\begin{array}{l}
\left(\operatorname{grad} \vec{u}_{h}, \operatorname{grad} \vec{v}_{h}\right)_{L^{2}}+\left(\operatorname{grad}_{h} p_{h}, \vec{v}_{h}\right)_{L^{2}}=\left(\vec{f}, \vec{v}_{h}\right)_{L^{2}}, \quad \forall \vec{v}_{h} \in V_{h}, \tag{3.4}\\
\left(\vec{u}_{h}, \operatorname{grad} q_{h}\right)_{L^{2}}=0, \quad \forall q_{h} \in Q_{h} .,
\end{array}\right.
$$

3.3 Matrix representation

With given bases in V_{h} and Q_{h}, (3.1) become

$$
\left(\begin{array}{cc}
A & B^{T} \tag{3.5}\\
B & 0
\end{array}\right) \cdot\binom{\vec{x}}{\vec{y}}=\binom{F}{0} .
$$

3.4 The problematic pressure

In many cases there is no problem with the computation of u_{h} (the A matrix i (3.5) is well conditioned since $a(\cdot, \cdot)$ is continuous and coercive).

But the results obtained for p_{h} can be absurd. To see why, suppose that u_{h} is known, let $\left(g, \vec{v}_{h}\right)_{L^{2}}:=$ $\left(\operatorname{grad} \vec{u}_{h}, \operatorname{grad} \vec{v}_{h}\right)_{L^{2}}-\left(\vec{f}, \vec{v}_{h}\right)_{L^{2}}$, and try to find $p_{h} \in Q_{h}$ s.t.

$$
\begin{equation*}
\left(\operatorname{grad} p_{h}, \vec{v}_{h}\right)_{H^{-1}, H_{0}^{1}}=-\left(g, \vec{v}_{h}\right)_{L^{2}}, \quad \forall \vec{v}_{h} \in V_{h}, \tag{3.6}
\end{equation*}
$$

that is, e.g. with continuous finite elements where $\left\langle\overrightarrow{\operatorname{grad}} p_{h}, \vec{v}_{h}\right\rangle_{H^{-1}, H_{0}^{1}}=\left(\overrightarrow{\operatorname{rad}} p_{h}, \vec{v}_{h}\right)_{L^{2}}$,

$$
\begin{equation*}
\left(\operatorname{grad}_{h} p_{h}, \vec{v}_{h}\right)_{L^{2}}=-\left(g, \vec{v}_{h}\right)_{L^{2}}, \quad \forall \vec{v}_{h} \in V_{h} . \tag{3.7}
\end{equation*}
$$

1- Nice case: $\operatorname{grad}_{h}=\Pi_{V_{h}} \circ \overrightarrow{\operatorname{grad}}: V_{h} \rightarrow Q_{h}$ is surjective (onto) with a constant independent of h, cf. (10.3), that is,

$$
\begin{equation*}
\exists k>0, \forall h>0, \forall p_{h} \in Q_{h}, \quad\left\|\operatorname{grad}_{h} p_{h}\right\|_{H^{-1}} \geq k\left\|p_{h}\right\|_{L_{0}^{2}} . \tag{3.8}
\end{equation*}
$$

And (3.8) is called the "discrete inf-sup condition".
Then the problem (3.4) is well-posed, i.e. the matrix i (3.5) is well-conditioned, cf. theorem (12.1) See Fortin [17] for V_{h} and Q_{h} finite element spaces that can satisfy (3.8).
(Remark: the problem (3.7) cannot be solved on its own in general, since it is surjective but not bijective. But (3.4) can be solved, the matrix $\left(\begin{array}{cc}A & B^{t} \\ B & 0\end{array}\right)$ being invertible and well-conditioned if (3.8) is satisfied.)

2- Bad case: In (3.8), $k>0$ does not exists, e.g.

$$
\begin{equation*}
\exists k_{h}>0, \quad \inf _{p_{h} \in Q_{h}} \sup _{\vec{v}_{h} \in V_{h}} \frac{\left(\operatorname{div} \vec{v}_{h}, p_{h}\right)_{L^{2}(\Omega)}}{\left\|\vec{v}_{h}\right\|_{H_{0}^{1}}\left\|p_{h}\right\|_{L^{2}}} \geq k_{h}, \quad \text { but } \quad k_{h} \underset{h \rightarrow 0}{\longrightarrow} 0 \tag{3.9}
\end{equation*}
$$

Then $\left(\begin{array}{cc}A & B^{t} \\ B & 0\end{array}\right)$ is not invertible (at least not numerically invertible as $h \rightarrow 0$: bad conditioning).
Example 3.1 A useful criteria to check the discrete inf-sup condition (3.8) is given by Fortin [17]. E.g., the discrete inf-sup condition is satisfied with the classical:
P_{2}, P_{1} (velocity-pressure) Taylor-Hood finite elements (see e.g. Bercovier-Pironneau (4).
P_{1}-bubble, P_{1} (velocity-pressure) finite elements, named the mini-elements, see Arnold-Brezzi-Fortin [1]. P_{2}, P_{0} (velocity-pressure) finite elements, see Crouzeix-Raviart 13.
(And for non conformity, the P_{1}-discontinuous velocity, P_{0}-pression, see Crouzeix-Raviart [13].)
Example 3.2 No convergence e.g. for the P_{1}, P_{1} continuous finite elements, or the P_{1}-continuous, P_{0} elements (checkerboard instability).

3.5 What has been lost...

(3.4) reads

$$
\begin{equation*}
\left(\Pi_{V_{h}} \operatorname{grad} p_{h}, \vec{v}_{h}\right)_{L^{2}}=-\left(g, \vec{v}_{b}\right), \quad \forall \vec{v}_{h} \in V_{h} . \tag{3.10}
\end{equation*}
$$

So we want $\operatorname{grad} p_{h}$, but we can only compute $\operatorname{grad}_{h} p_{h}=\Pi_{V_{h}}$ grad p_{h}, which in many cases is different from $\operatorname{grad} p_{h}$. Since

$$
\begin{equation*}
\overrightarrow{\operatorname{grad} p_{h}}=\Pi_{V_{h}} \operatorname{grad} p_{h}+\left(\overrightarrow{\operatorname{grad}} p_{h}-\Pi_{V_{h}} \operatorname{grad} p_{h}\right), \tag{3.11}
\end{equation*}
$$

we have lost

$$
\begin{equation*}
\operatorname{loss}=\left(\operatorname{grad} p_{h}-\Pi_{V_{h}} \operatorname{grad} p_{h}\right)=\left(\underset{\operatorname{grad}}{ } p_{h}-\operatorname{grad}_{h} p_{h}\right) . \tag{3.12}
\end{equation*}
$$

This can be an admissible loss, see e.g. example 3.1 or not, see e.g. example 3.2

3.6 ... and a reintroduction of the loss

To recover the loss (3.12), we modify (3.1) to get the new problem: Find $\vec{u}_{h} \in V_{h}$ et $p_{h} \in Q_{h}$ s.t.

$$
\left\{\begin{array}{l}
\left(\operatorname{grad} \vec{u}_{h}, \operatorname{grad} \vec{v}_{h}\right)_{L^{2}}-\left(p_{h}, \operatorname{div} \vec{v}_{h}\right)_{L^{2}}=\left(\vec{f}, \vec{v}_{h}\right)_{L^{2}}, \quad \forall \vec{v}_{h} \in V_{h}, \tag{3.13}\\
-\left(\operatorname{div} \vec{u}_{h}, q_{h}\right)_{L^{2}}-\sum_{K=1}^{n_{K}} h_{K}^{2}\left(\overrightarrow{\operatorname{grad}} p_{h}-\operatorname{grad}_{h} p_{h}, \overrightarrow{\operatorname{grad}} q_{h}-\operatorname{grad}_{h} q_{h}\right)_{L^{2}(K)}=0, \quad \forall q_{h} \in Q_{h} .
\end{array}\right.
$$

where n_{K} is the number of elements constituting the mesh, h is "the size of an element", and the h_{K}^{2} coefficient to get optimal results, see Leborgne [23] (we are interested in p_{h} and, for quasi-uniform meshes, p_{h} is of the same order than $\left.h \overrightarrow{\operatorname{grad}} p_{h}\right)$. E.g. for P_{1}, P_{1} continuous finite elements for both the velocity and the pressure, we get order 1 convergence results (classic for P_{1} finite elements).
(3.13) can also be written
since $\left(\operatorname{grad} p_{h}-\Pi_{V_{h}}\right.$ grad $\left.p_{h}, \vec{w}_{h}\right)=0$ for $\vec{w}_{h} \in V_{h}$ (definition of $\Pi_{V_{h}}$).
Computation: we have to compute a new unknown $\vec{z}_{h}=\Pi_{V_{h}}$ grad $p_{h} \in V_{h}$ (luckily very cheap for P_{1} finite elements): Find $\vec{u}_{h}, \vec{z}_{h} \in V_{h}$ et $p_{h} \in Q_{h}$ s.t.

$$
\left\{\begin{array}{l}
\left(\operatorname{grad} \vec{u}_{h}, \operatorname{grad} \vec{v}_{h}\right)_{L^{2}}-\left(p_{h}, \operatorname{div} \vec{v}_{h}\right)_{L^{2}}=\left(\vec{f}, \vec{v}_{h}\right)_{L^{2}}, \quad \forall \vec{v}_{h} \in V_{h}, \tag{3.15}\\
-\left(\operatorname{div} \vec{u}_{h}, q_{h}\right)_{L^{2}}-\sum_{K=1}^{n_{K}} h_{K}^{2}\left(\overrightarrow{\operatorname{grad}} p_{h}, \overrightarrow{\operatorname{grad}} q_{h}\right)_{L^{2}}+h^{2}\left(\vec{z}_{h}, \overrightarrow{\left.\operatorname{grad} q_{h}\right)_{L^{2}}=0, \quad \forall q_{h} \in Q_{h},}\right. \\
\left(\overrightarrow{\operatorname{grad} p_{h}}, \vec{z}_{h}^{\prime}\right)_{L^{2}(K)}-\left(\vec{z}_{h}, \vec{z}_{h}^{\prime}\right)_{L^{2}(K)}=0, \quad \forall \vec{z}_{h}^{\prime} \in V_{h}, \forall K
\end{array}\right.
$$

E.g.with P_{1} finite elements, the $\left(\vec{z}_{h}, \vec{z}_{h}^{\prime}\right)_{L^{2}}$ associated matrix can be made diagonal thanks to the "mass lumping" technique: Thus the last equation (in \vec{z}_{h}^{\prime}) gives \vec{z}_{h} explicitly as a function of grad ${ }_{h} p_{h}$ (order 1 precision).

Remark 3.3 The associated Lagrangian, cf. (2.8), is now:

3.7 Brezzi and Pitkäranta's method

A previous method proposed by Brezzi and Pitkäranta [9 consists in penalizing the initial problem with the Laplacian of the pressure (to "control the oscillations" of p_{h}): Find $\vec{u}_{h} \in V_{h}$ and $p_{h} \in Q_{h}$ s.t.

$$
\left\{\begin{array}{l}
\left(\operatorname{grad} \vec{u}_{h}, \overrightarrow{\operatorname{grad}} \vec{v}_{h}\right)_{L^{2}}-\left(p_{h}, \operatorname{div} \vec{v}_{h}\right)_{L^{2}}=\left(\vec{f}, \vec{v}_{h}\right)_{L^{2}}, \quad \forall \vec{v}_{h} \in V_{h}, \tag{3.17}\\
-\left(\operatorname{div} \vec{u}_{h}, q_{h}\right)_{L^{2}}-\varepsilon \sum_{K=1}^{n_{K}} h_{K}^{2}\left(\overrightarrow{\operatorname{grad}} p_{h}, \operatorname{grad} q_{h}\right)_{L^{2}(K)}=0, \quad \forall q_{h} \in Q_{h}
\end{array}\right.
$$

with some $\varepsilon>0$. We however get a spurious limit condition $\frac{\partial p}{\partial n}=0$ independent of ε (by integration by parts). (This spurious limit condition is lessen with (3.14).)

Remark 3.4 The associated Lagrangian is now:

$$
\begin{equation*}
L_{h}\left(\vec{v}_{h}, p_{h}\right)=\frac{1}{2}\left\|\operatorname{grad} \vec{v}_{h}\right\|_{L^{2}}^{2}-\left(p_{h}, \operatorname{div} \vec{v}_{h}\right)_{L^{2}}-\left(f, v_{h}\right)_{L^{2}}-\frac{1}{2} \varepsilon \sum_{K=1}^{n_{K}} h_{K}^{2}\left\|\overrightarrow{\operatorname{rad}} p_{h}\right\|_{L^{2}(K)}^{2}, \tag{3.18}
\end{equation*}
$$

to compare with (3.16).

3.8 Hughes, Franca and Balestra's method

Hughes, Franca and Balestra [22] proposed a "Galerkin Least-squares" method: The pressure is stabilized "with the solution". The problem reads, with the associated Lagrangian,

$$
\begin{equation*}
L(\vec{v}, p)=\frac{1}{2}\|\operatorname{grad} \vec{v}\|_{L^{2}(\Omega)}^{2}-(p, \operatorname{div} \vec{v})_{L^{2}(\Omega)}-(f, v)_{L^{2}(\Omega)}-\frac{\varepsilon}{2} \sum_{K=1}^{n_{K}} h_{K}^{2}\|-\Delta u+\operatorname{grad} p-f\|_{L^{2}(K)}^{2} \tag{3.19}
\end{equation*}
$$

(For P_{1} finite elements, this method is similar to Brezzi and Pitkäranta's method.)
Here ε has to be small enough not to destroy the coercivity in u, see the term $(\overrightarrow{\operatorname{grad}} u, \overrightarrow{\operatorname{grad}} v)_{L^{2}(\Omega)}-$ $\varepsilon \sum_{k} h^{2}(\Delta u, \Delta v)_{L^{2}(K)}$, the control being done thanks to the inverse inequality (quasi-uniform mesh)

$$
\left\|\Delta u_{h}\right\|_{L^{2}(K)} \leq C h\left\|\overrightarrow{\operatorname{grad}} u_{h}\right\|_{L^{2}(K)}, \quad \forall u_{h} \in V_{h}
$$

(So $0<\varepsilon<\frac{1}{\sqrt{C}}$.)

3.9 Douglas and Wang's method

To avoid the eventual destruction of the coercivity for \vec{u}, Douglas et Wang consider

$$
\begin{equation*}
\underbrace{(\operatorname{grad} \vec{u}, \operatorname{grad} \vec{v})_{L^{2}}-(p, \operatorname{div} \vec{v})+(q, \operatorname{div} \vec{u})+\varepsilon \sum_{K=1}^{n_{K}} h_{K}(-\Delta \vec{u}+\operatorname{grad} p-\vec{f},-\Delta \vec{v}+\operatorname{grad} q)_{L^{2}(K)}}_{c((\vec{u}, p),(\vec{v}, q))}=\underbrace{(f, v)_{L^{2}}}_{\ell(\vec{v}, q)} . \tag{3.20}
\end{equation*}
$$

This preserves the stability since $c(\cdot, \cdot)$ is coercive, but the symmetry is lost. So this method is adapted to the generalization of the Stokes equations to the Navier-Stokes equations.

4 Laplacian (harmonic problem)

The linear spaces needed are described in $\S(9$

4.1 A dirichlet problem

Let $f \in H^{-1}(\Omega)$. Problem: Find $p \in H_{0}^{1}(\Omega)$ s.t.

$$
\begin{equation*}
-\Delta p=f \tag{4.1}
\end{equation*}
$$

That is,

$$
\begin{equation*}
(\operatorname{grad} p, \operatorname{grad} q)_{L^{2}}=\langle f, q\rangle, \quad \forall q \in H_{0}^{1}(\Omega) \tag{4.2}
\end{equation*}
$$

The associated minimum problem is: Find the minimum of $J(p)=\min _{q \in H_{0}^{1}(\Omega)} J(q)$, where

$$
\begin{equation*}
J(q):=\frac{1}{2}\|\operatorname{grad} q\|_{L^{2}}^{2}-\langle f, q\rangle . \tag{4.3}
\end{equation*}
$$

To get $\operatorname{grad} p$ during the computation, introduce

$$
\begin{equation*}
\vec{u}=\operatorname{grad} p \in L^{2}(\Omega), \quad \text { and then } \quad-\operatorname{div} \vec{u}=f \tag{4.4}
\end{equation*}
$$

And (4.1) becomes: Find $(\vec{u}, p) \in L^{2}(\Omega) \times H_{0}^{1}(\Omega)$ s.t.

$$
\left\{\begin{array}{l}
(\vec{u}, \vec{v})_{L^{2}}-(\operatorname{grad} p, \vec{v})_{L^{2}}=0, \quad \forall \vec{v} \in L^{2}(\Omega), \tag{4.5}\\
-(\vec{u}, \operatorname{grad} q)_{L^{2}}=-\langle f, q\rangle_{H^{-1}, H_{0}^{1}}, \quad \forall q \in H_{0}^{1}(\Omega) .
\end{array}\right.
$$

And p is now the Lagrangian multiplier for the constraint $\operatorname{div} \vec{u}=-f$, cf. the integration by parts.
And if $(\vec{u}, p) \in L^{2}(\Omega) \times H_{0}^{1}(\Omega)$ is a solution, then $\vec{u}=\operatorname{grad} p \in L^{2}(\Omega)^{n}$ in Ω, and $\operatorname{div} \vec{u}=-f$ in $H^{-1}(\Omega)$.
So $\Delta p=f$ in $H^{-1}(\Omega)$ with $p \in H_{0}^{1}(\Omega)$: This is (4.1).
With

$$
\left\{\begin{array}{l}
a(\vec{u}, \vec{v})=(\vec{u}, \vec{v})_{L^{2}} \quad \text { sur } L^{2}(\Omega)^{n} \times L^{2}(\Omega)^{n} \tag{4.6}\\
b(\vec{v}, q)=-(\vec{v}, \operatorname{grad} q)_{L^{2}} \quad \text { sur } L^{2}(\Omega)^{n} \times H_{0}^{1}(\Omega)
\end{array}\right.
$$

(4.5) has the appearance of (1.1) with $V=L^{2}(\Omega)^{n}$ and $Q=H_{0}^{1}(\Omega)$.

Here $b(\vec{v}, p)=\langle B \vec{v}, p\rangle_{H^{-1}, H^{1}(\Omega)}=\left(B^{t} p, \vec{v}\right)_{L^{2}(\Omega)}$, so $B=\operatorname{div}:\left\{\begin{aligned} L^{2}(\Omega)^{n} & \rightarrow H^{-1}(\Omega) \\ \vec{v} & \rightarrow B \vec{v}=\operatorname{div}(\vec{v})\end{aligned}\right\}$ and $B^{t}=$ $-\operatorname{grad}:\left\{\begin{aligned} H_{0}^{1}(\Omega) & \rightarrow L^{2}(\Omega) \\ p & \rightarrow B^{t} p=-\operatorname{grad} p\end{aligned}\right\}$.

Thus $\operatorname{Ker}(B)=\operatorname{Ker}(\operatorname{div})=\left\{\vec{v} \in L^{2}(\Omega)^{n}: \operatorname{div} \vec{v}=0\right\}$, and thanks to the Helmholtz decomposition (9.31) $L^{2}(\Omega)^{n}=\overrightarrow{\operatorname{grad}}\left(H_{0}^{1}(\Omega)\right) \oplus^{\perp_{L^{2}}} \operatorname{Ker}(\operatorname{div})$, the bilinear form $a(\cdot, \cdot)$ is $(\cdot, \cdot)_{L^{2}}$ coercive on $\operatorname{Ker}(B)$.

And B^{t} is surjective since B is, cf. (13.5) and the closed range theorem 11.2 .
Thus (4.5) is well-posed, see theorem 12.1.

4.2 A Neumann problem

Let $f \in L^{2}(\Omega)$. Problem: Find $p \in H^{1}(\Omega)$ s.t.

$$
\begin{equation*}
-\Delta p=f, \quad \text { and } \quad \frac{\partial p}{\partial n \mid \Gamma}=0 \tag{4.7}
\end{equation*}
$$

That is,

$$
\begin{equation*}
(\operatorname{grad} p, \operatorname{grad} q)_{L^{2}}=(f, q)_{L^{2}}, \quad \forall q \in H_{0}^{1}(\Omega) . \tag{4.8}
\end{equation*}
$$

The associated minimum problem is: Find the minimum of $J(p)=\min _{q \in H^{1}(\Omega)} J(q)$, where

$$
\begin{equation*}
J(q):=\frac{1}{2}\|\operatorname{grad} q\|_{L^{2}}^{2}-(f, q)_{L^{2}} \tag{4.9}
\end{equation*}
$$

The mixed associated problem is: Find $(\vec{u}, p) \in H^{\operatorname{div}}(\Omega) \times L^{2}(\Omega)$ s.t.

$$
\left\{\begin{array}{l}
(\vec{u}, \vec{v})_{L^{2}}+(p, \operatorname{div} \vec{v})_{L^{2}}=0, \quad \forall \vec{v} \in H^{\operatorname{div}}(\Omega), \tag{4.10}\\
(\operatorname{div} \vec{u}, q)_{L^{2}}=(f, q)_{L^{2}}, \quad \forall q \in L^{2}(\Omega) .
\end{array}\right.
$$

Indeed, if $(\vec{u}, p) \in H^{\operatorname{div}}(\Omega) \times L^{2}(\Omega)$ is a solution, then $\operatorname{div} \vec{u}=f \in L^{2}(\Omega), \vec{u}=-\operatorname{grad} p \in H^{-1}(\Omega)$, thus $-\Delta p=f \in L^{2}(\Omega)$, with $\frac{\partial p}{\partial n}{ }_{\Gamma}=0\left(\right.$ since $\left.\operatorname{Im}\left(\gamma_{n}\right)=H^{-\frac{1}{2}}(\Gamma)\right)$.

With

$$
\left\{\begin{array}{l}
a(\vec{u}, \vec{v})=(\vec{u}, \vec{v})_{L^{2}} \quad \text { sur } H^{\operatorname{div}}(\Omega) \times H^{\operatorname{div}}(\Omega) \tag{4.11}\\
b(\vec{v}, q)=(\operatorname{div} \vec{v}, q)_{L^{2}} \quad \text { sur } H^{\operatorname{div}}(\Omega) \times L^{2}(\Omega)
\end{array}\right.
$$

(4.5) has the appearance of (1.1) with $V=H^{\text {div }}(\Omega)$ and $Q=L^{2}(\Omega)$.

Here $B: \vec{v} \in H^{\operatorname{div}}(\Omega) \rightarrow B \vec{v}=\operatorname{div} \vec{v} \in L^{2}(\Omega)$ is surjective, cf. (13.2), and $a(\cdot, \cdot)$ est $H^{\text {div }}$-coercive on $\operatorname{Ker}(B)=\left\{\vec{v} \in H^{\text {div }}(\Omega): \operatorname{div} \vec{v}=0\right\}$. And $\operatorname{Im}(B)$ being closed (since it is surjective), so is $\operatorname{Im}\left(B^{t}\right)$ (closed range theorem (11.2). Thus (4.10) is well-posed, see theorem 12.1 .

5 Bilaplacian (biharmonic problem)

The linear spaces needed are described in $\S(9$

5.1 Problem

We look here at the Dirichlet problem: If $f \in H^{-2}(\Omega)=\left(H_{0}^{2}(\Omega)\right)^{\prime}$, then find $p \in H_{0}^{2}(\Omega)$ s.t.

$$
\begin{equation*}
\Delta(\Delta p)=f, \quad \text { so with } \quad p_{\mid \Gamma}=0 \quad \text { and } \quad \frac{\partial p}{\partial n}{ }_{\mid \Gamma}=0 . \tag{5.1}
\end{equation*}
$$

Weak form: Find $p \in H_{0}^{2}(\Omega)$ s.t.

$$
\begin{equation*}
(\Delta p, \Delta q)_{L^{2}}=\langle f, q\rangle_{H^{-2}, H_{0}^{2}}, \quad \forall q \in H_{0}^{2}(\Omega) \tag{5.2}
\end{equation*}
$$

The Lax-Milgram theorem indicates that (5.2) is well-posed.
The associated minimum problem is: Find the minimum of $J(p)=\min _{q \in H_{0}^{1}(\Omega)} J(q)$, where

$$
\begin{equation*}
J(q):=\frac{1}{2}\|\Delta q\|_{L^{2}}^{2}-\langle f, q\rangle_{H^{-2}, H_{0}^{2}} . \tag{5.3}
\end{equation*}
$$

5.2 Introduction of Δp

(Not conclusive.) A function in $\in H^{2}(\Omega)$, s.t. Δp and Δq in (5.2), is cumbersome to approximate, cf. the C^{1} Argyris finite elements. Let

$$
\begin{equation*}
\phi=\Delta p \tag{5.4}
\end{equation*}
$$

Then problem (5.1) is rewritten as: Find $(\phi, p) \in L^{2}(\Omega) \times H_{0}^{2}(\Omega)$ s.t.

$$
\left\{\begin{array}{l}
\phi=\Delta p \tag{5.5}\\
\Delta \phi=f
\end{array}\right.
$$

And the weak form is, if $f \in H^{-1}(\Omega)$: Find $(\phi, p) \in H^{1}(\Omega) \times H_{0}^{1}(\Omega)$ s.t.

$$
\begin{cases}(\phi, \psi)_{L^{2}}+(\operatorname{grad} p, \operatorname{grad} \psi)_{L^{2}}=0, & \forall \psi \in H^{1}(\Omega) \tag{5.6}\\ (\overrightarrow{\operatorname{grad}} \phi, \overrightarrow{\operatorname{grad}} q)_{L^{2}}=-\langle f, q\rangle_{H^{-1}, H_{0}^{1}}, & \forall q \in H_{0}^{1}(\Omega)\end{cases}
$$

Indeed, if $(\phi, p) \in H^{1}(\Omega) \times H_{0}^{1}(\Omega)$ is as solution of (5.6), then $\phi-\Delta p=0$ (thus $\Delta p \in L^{2}(\Omega)$), and $\left.\frac{\partial p}{\partial n} \right\rvert\, \Gamma=0$. And $p \in H_{0}^{1}(\Omega)$ with $\Delta \phi=f \in H^{-1}(\Omega)$, thus $\Delta^{2} p=f$.

With

$$
\left\{\begin{array}{l}
a(\phi, \psi)=(\phi, \psi)_{L^{2}} \quad \text { sur } H^{1}(\Omega) \times H^{1}(\Omega), \tag{5.7}\\
b(\phi, v)=\left(\overrightarrow{\operatorname{grad} \phi,} \overrightarrow{\operatorname{grad} v)_{L^{2}} \quad \text { sur } H^{1}(\Omega) \times H_{0}^{1}(\Omega),}\right.
\end{array}\right.
$$

(4.5) has the appearance of (5.6) with $V=H^{1}(\Omega)$ and $Q=H_{0}^{1}(\Omega)$.

Here $b(\phi, v)=-\langle\Delta \phi, v\rangle_{H^{-1}, H_{0}^{1}}$, thus $B=-\Delta: H^{1}(\Omega) \rightarrow H^{-1}(\Omega)$.
Thus $B: \phi \in H^{1}(\Omega) \rightarrow B \phi=-\Delta \phi \in H^{-1}(\Omega)$ is surjective: Apply Lax-Milgram theorem for $g \in H^{-1}(\Omega)$ and $(\underset{\operatorname{rad}}{ } \boldsymbol{\rightharpoonup}, \overrightarrow{\operatorname{grad}} \psi)_{L^{2}}=\langle g, \psi\rangle_{H^{-1}, H_{0}^{1}}$.

And $\operatorname{Ker} B=\left\{\phi \in H^{1}(\Omega): \Delta \phi=0\right\}$ (harmonic functions). So $\phi \in \operatorname{Ker} B$ iff $(\overrightarrow{\operatorname{grad}} \phi, \operatorname{grad} v)_{L^{2}}=0$ for all $v \in H_{0}^{1}(\Omega)$ (this is not $(\operatorname{grad} \phi, \operatorname{grad} v)_{L^{2}}=0$ for all $\left.v \in H^{1}(\Omega)\right)$. Thus $a(\cdot, \cdot)$ is not $(\cdot, \cdot)_{H^{1-}}$ coercive on $\operatorname{Ker} B$, but only $(\cdot, \cdot)_{L^{2}}$ coercive, and the usual theorem is not applicable: A loss of precision (precision $\|.\|_{L^{2}}$ instead of precision $\|.\|_{H^{1}}$ for ϕ) is to be expected.

5.3 Introduction of $\operatorname{grad} p$

5.3.1 Weak form

In (5.2) let us introduce

$$
\begin{equation*}
\vec{u}=\operatorname{grad} p, \quad \text { thus } \quad \Delta p=\operatorname{div} \vec{u} . \tag{5.8}
\end{equation*}
$$

Notation:

$$
\begin{equation*}
\text { if } \vec{v}=\operatorname{grad} q \in \operatorname{grad}\left(H_{0}^{1}(\Omega)\right), \quad \text { then } \quad \vec{v} \stackrel{\text { denoted }}{=} \vec{v}_{q} . \tag{5.9}
\end{equation*}
$$

(That is, \vec{v}_{q} derives from a potential $q \in H_{0}^{1}(\Omega)$. .)
Then (5.2) becomes: Find $\vec{u}_{p}=\overrightarrow{\operatorname{grad}} p \in \overrightarrow{\operatorname{grad}}\left(H_{0}^{1}(\Omega)\right)$ s.t.

$$
\begin{equation*}
\left(\operatorname{div} \vec{u}_{p}, \operatorname{div} \vec{v}_{q}\right)_{L^{2}}=\langle f, q\rangle_{H^{-2}, H_{0}^{2}}, \quad \forall q \in H_{0}^{2}(\Omega) \tag{5.10}
\end{equation*}
$$

5.3.2 A first constrained formulation

(Not conclusive.) To avoid working with the "small space" $\operatorname{grad}\left(H_{0}^{1}(\Omega)\right) \ni \vec{u}$, we consider the whole space $H_{0}^{1}(\Omega) \ni \vec{u}$ and we add the constraint $\vec{u}-\operatorname{grad} p=0$, cf. (5.8) (and the associated Lagrangian multiplier $\vec{\lambda}$).

And $\vec{u} \in H^{1}(\Omega)$ and $\vec{u}=\operatorname{grad} p$ for some $p \in H_{0}^{2}(\Omega)$ solution of (5.2), give $\operatorname{div} \vec{u}=\Delta p \in L^{2}(\Omega)$ with $0=\frac{\partial p}{\partial n}{ }_{\mid \Gamma}=\vec{u} \cdot \vec{n}_{\mid \Gamma}$, so $\vec{u} \in H_{0}^{\text {div }}(\Omega)$. Then let

$$
\begin{equation*}
X=H_{0}^{\mathrm{div}}(\Omega) \times H_{0}^{1}(\Omega) \tag{5.11}
\end{equation*}
$$

provided with the inner product

$$
\begin{equation*}
((\vec{u}, p),(\vec{v}, q))_{X}=(\operatorname{div} \vec{u}, \operatorname{div} \vec{v})_{L^{2}}+(\overrightarrow{\operatorname{grad} p}, \operatorname{\operatorname {grad}} q)_{L^{2}(\Omega)}, \tag{5.12}
\end{equation*}
$$

so that X is a Hilbert space.
Then, if $f \in H^{-1}(\Omega)$, (5.10) is turned into: Find $((\vec{u}, p), \vec{\lambda}) \in X \times L^{2}(\Omega)^{n}$ s.t.

$$
\left\{\begin{array}{l}
(\operatorname{div} \vec{u}, \operatorname{div} \vec{v})_{L^{2}}+\left(\vec{\lambda}, \vec{v}-\operatorname{\operatorname {grad}q)_{L^{2}}=\langle f,q\rangle _{H^{-1},H_{0}^{1}},\quad \forall (\vec {v},q)\in X} \begin{array}{l}
(\vec{u}-\operatorname{grad} p, \vec{\mu})_{L^{2}}=0, \quad \forall \vec{\mu} \in L^{2}(\Omega)^{n}
\end{array},\right. \tag{5.13}
\end{array}\right.
$$

that is,

$$
\left\{\begin{array}{l}
(\operatorname{div} \vec{u}, \operatorname{div} \vec{v})_{L^{2}}+(\vec{\lambda}, \vec{v})_{L^{2}}=0, \quad \forall \vec{v} \in H_{0}^{\operatorname{div}}(\Omega), \tag{5.14}\\
-(\vec{\lambda}, \operatorname{grad} q)_{L^{2}}=\langle f, q\rangle_{H^{-1}, H_{0}^{1}}, \quad \forall q \in H_{0}^{1}(\Omega), \\
(\vec{u}, \vec{\mu})_{L^{2}}-(\overrightarrow{\operatorname{rad}} p, \vec{\mu})_{L^{2}}=0, \quad \forall \vec{\mu} \in L^{2}(\Omega)^{n}
\end{array}\right.
$$

Check: If $((\vec{u}, p), \vec{\lambda}) \in X \times L^{2}(\Omega)^{n}$ is a solution of (5.13) or (5.14), then $\vec{\lambda}=\operatorname{grad}(\operatorname{div} \vec{u}), \operatorname{div} \vec{\lambda}=f$, $\vec{u}=\operatorname{grad} p$, thus $\operatorname{div} \vec{u}=\Delta p$ and $\operatorname{div}(\operatorname{grad}(\Delta p))=f$, i.e. $\Delta^{2} p=f$. And $\vec{u} \in H_{0}^{\text {div }}(\Omega)$ gives $\vec{u} . \vec{n}=0$, so $\overrightarrow{\operatorname{grad} p} \cdot \vec{n}=0$, and with $p \in H_{0}^{1}(\Omega)$ we get $p \in H_{0}^{2}(\Omega)$.

With

$$
\left\{\begin{array}{l}
a((\vec{u}, p),(\vec{v}, q))=(\operatorname{div} \vec{u}, \operatorname{div} \vec{v})_{L^{2}} \quad \text { sur } X \times X, \tag{5.15}\\
b((\vec{v}, q), \vec{\mu})=\left(\vec{v}-\overrightarrow{\operatorname{grad} q, \vec{\mu})_{L^{2}} \quad \text { sur } X \times L^{2}(\Omega)^{n},}\right.
\end{array}\right.
$$

(5.13) has the appearance of (1.1) with $V=X$ and $Q=L^{2}(\Omega)^{n}$.

Here $B:\left\{\begin{aligned} H_{0}^{\mathrm{div}}(\Omega) \times H_{0}^{1}(\Omega) & \rightarrow L^{2}(\Omega)^{n} \\ (\vec{v}, q) & \rightarrow B(\vec{v}, q)=\vec{v}-\underset{\operatorname{grad} q}{ }\}\end{aligned}\right\}$.
And $\operatorname{Ker}(B)=\left\{(\vec{v}, q) \in H_{0}^{\operatorname{div}}(\Omega) \times H_{0}^{1}(\Omega): \vec{v}=\operatorname{grad} q\right\}$. Thus is $(\vec{v}, q) \in \operatorname{Ker}(B)$ then $\Delta p \in L^{2}(\Omega)$ and $a((\vec{u}, p),(\vec{v}, q))=\frac{1}{2}(\operatorname{div} \vec{u}, \operatorname{div} \vec{v})_{L^{2}}+\frac{1}{2}(\Delta p, \Delta q)_{L^{2}}$. And when $p \in H^{2}(\Omega) \cap H_{0}^{1}(\Omega)$ we have $\|\Delta p\|_{L^{2}} \geq$ $C\|p\|_{H^{2}} \geq C\|p\|_{H^{1}}$, cf. (9.29). Thus $a(\cdot, \cdot)$ is coercive on $\left(\operatorname{Ker}(B),(\cdot, \cdot)_{X}\right)$.

But B is not surjective: If $\vec{\ell} \in L^{2}(\Omega)^{n}$ we should find $(\vec{v}, q) \in H_{0}^{\text {div }}(\Omega) \times H_{0}^{1}(\Omega)$ s.t. $\vec{\ell}=\vec{v}-\operatorname{grad} q$, but we only have (9.31). So $\vec{\lambda}$ has a priori no $\|\cdot\|_{L^{2}(\Omega)}$ control, and for the discretization we expect a loss of precision. Here $B^{t}:\left\{\begin{aligned} D \subset L^{2}(\Omega)^{n} & \rightarrow H_{0}^{\mathrm{div}}(\Omega)^{\prime} \times H^{-1}(\Omega) \\ \mu & \rightarrow B^{t} \mu: B^{t} \mu(\vec{v}, q)=\langle\vec{v}, \mu\rangle_{H_{0}^{\text {div }}, H^{\text {div }}}+\langle q, \operatorname{div} \mu\rangle_{H^{-1}, H_{0}^{1}}\end{aligned}\right\}$ where $D=H_{0}^{\operatorname{div}}(\Omega)$ (the domain of definition) is not closed in $L^{2}(\Omega)$ (its closure is $L^{2}(\Omega)$).

5.3.3 A second constrained formulation

(Not conclusive.) Let

$$
\begin{equation*}
X_{+}=H_{0}^{1}(\Omega)^{n} \times H_{0}^{1}(\Omega) \tag{5.16}
\end{equation*}
$$

provided with the inner product

$$
\begin{equation*}
((\vec{u}, p),(\vec{v}, q))_{X_{+}}=(\operatorname{grad} \vec{u}, \operatorname{grad} \vec{v})_{L^{2}}+(\operatorname{grad} p, \operatorname{grad} q)_{L^{2}(\Omega)} \tag{5.17}
\end{equation*}
$$

so that X_{+}is a Hilbert space.
With a Cartesian basis, we notice that $(\Delta p, \Delta q)_{L^{2}}=\sum_{i j} \int_{\Omega} \frac{\partial^{2} p}{\partial x_{i}^{2}} \frac{\partial^{2} q}{\partial x_{j}^{2}} d \Omega$, and, for $p, q \in H_{0}^{2}(\Omega)$,

$$
\begin{equation*}
\int_{\Omega} \frac{\partial^{2} p}{\partial x_{i}^{2}} \frac{\partial^{2} q}{\partial x_{j}^{2}} d \Omega=-\int_{\Omega} \frac{\partial^{3} p}{\partial x_{i}^{2} \partial x_{j}} \frac{\partial q}{\partial x_{j}} d \Omega=\int_{\Omega} \frac{\partial^{2} p}{\partial x_{i} \partial x_{j}} \frac{\partial^{2} q}{\partial x_{i} \partial x_{j}} d \Omega \tag{5.18}
\end{equation*}
$$

Thus, with (5.9) and $\vec{v}_{p}, \vec{v}_{q} \in \operatorname{grad}\left(H_{0}^{1}(\Omega)\right)$ cf., we get

$$
\begin{equation*}
\left(\operatorname{div} \vec{v}_{p}, \operatorname{div} \vec{v}_{q}\right)_{L^{2}}=(\Delta p, \Delta q)_{L^{2}}=(\operatorname{grad}(\operatorname{grad} p), \operatorname{grad}(\operatorname{grad} q))_{L^{2}}=\left(\operatorname{grad} \vec{v}_{p}, \operatorname{grad} \vec{v}_{q}\right)_{L^{2}} \tag{5.19}
\end{equation*}
$$

(Nota Bene: Here \vec{v}_{p} and \vec{v}_{q} derives from a potential.) Thus (5.10) reads: Find $\vec{u}=\vec{v}_{p} \in \operatorname{grad}\left(H_{0}^{1}(\Omega)\right)$ s.t.

$$
\begin{equation*}
\left(\operatorname{grad} \vec{u}, \operatorname{grad} \vec{v}_{q}\right)_{L^{2}}=(f, q)_{L^{2}}, \quad \forall q \in H_{0}^{1}(\Omega) \tag{5.20}
\end{equation*}
$$

So, if $f \in H^{-1}(\Omega)$, then (5.10) is transformed into: Find $((\vec{u}, p), \vec{\lambda}) \in X_{+} \times L^{2}(\Omega)^{n}$ s.t.

$$
\left\{\begin{array}{l}
(\operatorname{grad} \vec{u}, \operatorname{grad} \vec{v})_{L^{2}}+\left(\vec{\lambda}, \vec{v}-\overrightarrow{\operatorname{grad} q)_{L^{2}}=\langle f, q\rangle_{H^{-1}, H_{0}^{1}}, \quad \forall(\vec{v}, q) \in X_{+},}\right. \tag{5.21}\\
(\vec{u}-\overrightarrow{\operatorname{grad} p, \vec{\mu}})_{L^{2}}=0, \quad \forall \vec{\mu} \in L^{2}(\Omega)^{n},
\end{array}\right.
$$

$\vec{\lambda}$ being the Lagrangian multiplier of the constraint (5.8). That is,

$$
\left\{\begin{array}{l}
(\operatorname{grad} \vec{u}, \operatorname{grad} \vec{v})_{L^{2}}+(\vec{\lambda}, \vec{v})_{L^{2}}=0, \quad \forall \vec{v} \in H_{0}^{1}(\Omega)^{n} \tag{5.22}\\
-(\vec{\lambda}, \operatorname{grad} q)_{L^{2}}=\langle f, q\rangle_{H^{-1}, H_{0}^{1}}, \quad \forall q \in H_{0}^{1}(\Omega) \\
(\vec{u}, \vec{\mu})_{L^{2}}-(\operatorname{grad} p, \vec{\mu})_{L^{2}}=0, \quad \forall \vec{\mu} \in L^{2}(\Omega)^{n}
\end{array}\right.
$$

With

$$
\left\{\begin{array}{l}
a((\vec{u}, p),(\vec{v}, q))=(\operatorname{grad} \vec{u}, \operatorname{grad} \vec{v})_{L^{2}} \quad \text { sur } X_{+} \times X_{+} \tag{5.23}\\
b((\vec{v}, q), \vec{\mu})=(\vec{v}, \vec{\mu})_{L^{2}}-\left(\underset{\operatorname{rad} p, \vec{\mu})_{L^{2}} \quad \text { sur } X_{+} \times L^{2}(\Omega)^{n}}{ } .\right.
\end{array}\right.
$$

(5.21) has the appearance of (1.1) with $V=X_{+}$and $Q=L^{2}(\Omega)^{n}$.

Et $B:\left\{\begin{aligned} H_{0}^{1}(\Omega)^{n} \times H_{0}^{1}(\Omega) & \rightarrow L^{2}(\Omega)^{n} \\ (\vec{v}, q) & \rightarrow B(\vec{v}, q)=\vec{v}-\underset{\operatorname{grad} q}{ }\} \text {. And }(\vec{v}, q) \in \operatorname{Ker}(B) \operatorname{iff} \operatorname{grad} q=\vec{v} \in H_{0}^{1}(\Omega)^{n},\end{aligned}\right.$ thus $a(\cdot, \cdot)$ is coercive on $\left(\operatorname{Ker}(B),(\cdot, \cdot)_{X_{+}}\right)$. (Compared to (5.15), here we a $\|\cdot\|_{H^{1}}$ for \vec{u}, not only a $\|\cdot\|_{H^{\text {div }}}$ control.)

However B is not surjective. And $\vec{\lambda}$ is not controlled the classical way.

5.3.4 A third constrained formulation

("A good one".) Let

$$
\begin{equation*}
Y=H_{0}^{\mathrm{div}}(\Omega) \times H^{1}(\Omega) \tag{5.24}
\end{equation*}
$$

provided with the inner product

$$
\begin{equation*}
((\vec{u}, p),(\vec{v}, q))_{Y}=(\operatorname{div} \vec{u}, \operatorname{div} \vec{v})_{L^{2}}+(p, q)_{H^{1}} \tag{5.25}
\end{equation*}
$$

so that Y is a Hilbert space.
If $f \in L^{2}(\Omega)$ (or in $\left.\left(H^{1}(\Omega)\right)^{\prime}\right)$, (5.13) is transformed into: Find $((\vec{u}, p), \vec{\lambda}) \in Y \times H^{\text {div }}(\Omega)$ s.t.

$$
\left\{\begin{array}{l}
(\operatorname{div} \vec{u}, \operatorname{div} \vec{v})_{L^{2}}+(\vec{\lambda}, \vec{v})_{L^{2}}+(q, \operatorname{div} \vec{\lambda})_{L^{2}}=(f, q)_{L^{2}}, \quad \forall(\vec{v}, q) \in Y, \tag{5.26}\\
(\vec{u}, \vec{\mu})_{L^{2}}+(\vec{\lambda}, \operatorname{div} \vec{\mu})=0, \quad \forall \vec{\mu} \in H^{\operatorname{div}}(\Omega)
\end{array}\right.
$$

that is,

$$
\left\{\begin{array}{l}
(\operatorname{div} \vec{u}, \operatorname{div} \vec{v})_{L^{2}}+(\vec{\lambda}, \vec{v})_{L^{2}}=0, \quad \forall \vec{v} \in H_{0}^{\operatorname{div}}(\Omega) \tag{5.27}\\
(\operatorname{div} \vec{\lambda}, q)_{L^{2}}=(f, q)_{L^{2}}, \quad \forall q \in H^{1}(\Omega) \\
(\vec{u}, \vec{\mu})_{L^{2}}+(p, \operatorname{div} \vec{\mu})_{L^{2}}=0, \quad \forall \vec{\mu} \in H^{\operatorname{div}}(\Omega)
\end{array}\right.
$$

So $\vec{\lambda}=\operatorname{grad}(\operatorname{div} \vec{u}), \operatorname{div} \vec{\lambda}=f, \vec{u}=\operatorname{grad} p$, thus $\operatorname{div}(\operatorname{grad}(\operatorname{divgrad} p))=f$, i.e. $\Delta^{2} p=f$. And $\int_{\Gamma} p \vec{\mu} \cdot \vec{n} d \Gamma=$ $0=\langle p, \vec{\mu} \cdot \vec{n}\rangle_{H^{\frac{1}{2}}(\Gamma), H^{-\frac{1}{2}}(\Gamma)}$ for all $\vec{\mu} \in H^{\operatorname{div}}(\Omega)$, thus $p_{\mid \Gamma}=0$ in $H^{\frac{1}{2}}(\Gamma)$ (the trace operator $\vec{v} \in H^{\text {div }}(\Omega) \rightarrow$ $\vec{v} \cdot \vec{n} \in H^{-\frac{1}{2}}(\Gamma)$ is surjective). Thus $p \in H_{0}^{1}(\Omega)$. With $\vec{u} \in H_{0}^{\operatorname{div}}(\Omega)$, thus $\operatorname{grad} p \cdot \vec{n}=\vec{u} . \vec{n}=0$, so $p \in H_{0}^{2}(\Omega)$.

With

$$
\left\{\begin{array}{l}
a((\vec{u}, p),(\vec{v}, q))=(\operatorname{div} \vec{u}, \operatorname{div} \vec{v})_{L^{2}} \quad \text { sur } Y \times Y, \tag{5.28}\\
b((\vec{v}, q), \vec{\mu})=(\vec{v}, \vec{\mu})_{L^{2}}+(q, \operatorname{div} \vec{\mu})_{L^{2}} \quad \operatorname{sur} Y \times H^{\operatorname{div}}(\Omega)
\end{array}\right.
$$

(5.26) has the appearance of (1.1) with $V=Y$ and $Q=H^{\mathrm{div}}(\Omega)$.

And $B:\left\{\begin{aligned} H_{0}^{\operatorname{div}}(\Omega) \times H^{1}(\Omega) & \rightarrow H^{\mathrm{div}}(\Omega)^{\prime} \\ (\vec{v}, q) & \rightarrow B(\vec{v}, q),\end{aligned}\right\}$ with $\langle B(\vec{v}, q), \vec{\mu}\rangle=(\vec{v}, \vec{\mu})_{L^{2}}+(q, \operatorname{div} \vec{\mu})_{L^{2}}$. So B is surjective, cf. (9.25).

And $b((\vec{v}, q), \vec{\mu})=(\vec{v}, \vec{\mu})_{L^{2}(\Omega)}-(\operatorname{grad} q, \vec{\mu})_{L^{2}(\Omega)}+(q, \vec{\mu} \cdot \vec{n})_{L^{2}(\Gamma)}$ gives $(\vec{v}, q) \in \operatorname{Ker}(B) \operatorname{iff}(\vec{v}, q) \in H_{0}^{\operatorname{div}}(\Omega) \times$ $H_{0}^{1}(\Omega)$ with $\vec{v}=\operatorname{grad} q$. Thus $a(\cdot, \cdot)$ is coercive on $\left(\operatorname{Ker}(B),(\cdot, \cdot)_{Y}\right)$, and the classical theorem 12.1apply.

Remark 5.1 (Neumann.) With $Z=H^{\text {div }}(\Omega) \times H_{0}^{1}(\Omega)$, (5.26) is transformed into: Find $((\vec{u}, p), \vec{\lambda}) \in$ $Z \times H_{0}^{\text {div }}(\Omega)$ s.t.

$$
\left\{\begin{array}{l}
(\operatorname{div} \vec{u}, \operatorname{div} \vec{v})_{L^{2}}+(\vec{\lambda}, \vec{v})_{L^{2}}=0, \quad \forall \vec{v} \in H^{\operatorname{div}}(\Omega) \tag{5.29}\\
(\operatorname{div} \vec{\lambda}, q)_{L^{2}}=(f, q)_{L^{2}}, \quad \forall q \in H_{0}^{1}(\Omega) \\
(\vec{u}, \vec{\mu})_{L^{2}}+(p, \operatorname{div} \vec{\mu})_{L^{2}}=0, \quad \forall \vec{\mu} \in H_{0}^{\operatorname{div}}(\Omega)
\end{array}\right.
$$

So, in $\Omega, \vec{\lambda}=\operatorname{grad}(\operatorname{div} \vec{u}), \operatorname{div} \vec{\lambda}=f, \vec{u}=\operatorname{grad} p$, thus $\operatorname{div}(\operatorname{grad}(\operatorname{divgrad} p))=f$, i.e. $\Delta^{2} p=f$. And on Γ, $\overrightarrow{\operatorname{grad}}(\operatorname{div} \vec{u}) \cdot \vec{n}=0$, thus $\operatorname{grad}(\Delta p) \cdot \vec{n}=0$ (Neumann limit condition), with $p \in H_{0}^{1}(\Omega)$.

5.3.5 A fourth constrained formulation

Let

$$
\begin{equation*}
Y_{+}=H_{0}^{1}(\Omega) \times H^{1}(\Omega) \tag{5.30}
\end{equation*}
$$

provided with the inner product

$$
\begin{equation*}
((\vec{u}, p),(\vec{v}, q))_{Y_{+}}=(\operatorname{grad} \vec{u}, \overrightarrow{\operatorname{grad} \vec{v}})_{L^{2}}+(p, q)_{H^{1}} \tag{5.31}
\end{equation*}
$$

And (5.27) is replaced with

$$
\left\{\begin{array}{l}
(\operatorname{grad} \vec{u}, \operatorname{grad} \vec{v})_{L^{2}}+(\vec{\lambda}, \vec{v})_{L^{2}}=0, \quad \forall \vec{v} \in H_{0}^{\operatorname{div}}(\Omega) \tag{5.32}\\
(\operatorname{div} \vec{\lambda}, q)_{L^{2}}=(f, q)_{L^{2}}, \quad \forall q \in H^{1}(\Omega) \\
(\vec{u}, \vec{\mu})_{L^{2}}+(p, \operatorname{div} \vec{\mu})_{L^{2}}=0, \quad \forall \vec{\mu} \in H^{\operatorname{div}}(\Omega)
\end{array}\right.
$$

And (5.28) is replaced with

$$
\begin{cases}a((\vec{u}, p),(\vec{v}, q))=(\operatorname{grad} \vec{u}, \operatorname{grad} \vec{v})_{L^{2}} & \text { sur } Y_{+} \times Y_{+} \tag{5.33}\\ b((\vec{v}, q), \vec{\mu})=(\vec{v}, \vec{\mu})_{L^{2}}+(q, \operatorname{div} \vec{\mu})_{L^{2}} & \text { sur } Y_{+} \times H^{\operatorname{div}}(\Omega)\end{cases}
$$

6 Locking

The locking phenomenon appears when the coercivity of the approximated problem increases much faster than the coercivity of the continuous problem. Thus the numerical solution is close to zero, which is absurd in general.

Let Ω be bounded open set in \mathbb{R}^{n}.

6.1 A typical situation

Let $\lambda \in \mathbb{R}$ so that $\lambda \gg 1$ (a "large" given real). We look for $\vec{u} \in H_{0}^{1}(\Omega)^{n}$ and $p \in H_{0}^{1}(\Omega)$ that minimize

$$
\begin{equation*}
M(\vec{v}, q)=\frac{1}{2}\|\operatorname{grad} \vec{v}\|_{L^{2}(\Omega)}^{2}+\frac{\lambda}{2}\|\vec{v}-\operatorname{grad} q\|_{L^{2}(\Omega)}-(\vec{f}, \vec{v})_{L^{2}(\Omega)}-(g, q)_{L^{2}(\Omega)} \tag{6.1}
\end{equation*}
$$

Example 6.1 For the Mindlin-Reissner problem, $\|\operatorname{grad} \vec{v}\|_{L^{2}(\Omega)}^{2}$ is replaced by $|a(\vec{v}, \vec{v})|$ where $a(\cdot, \cdot)$ is a bilinear form that is continuous and coercive on $H_{0}^{1}(\Omega)$.

Let

$$
\begin{equation*}
X=H_{0}^{1}(\Omega)^{n} \times H_{0}^{1}(\Omega) \tag{6.2}
\end{equation*}
$$

provided with the inner product associated to the norm

$$
\begin{equation*}
\|(\vec{v}, q)\|_{X}=\left(\|\operatorname{grad} \vec{v}\|_{L^{2}}^{2}+\|\operatorname{grad} q\|_{L^{2}}^{2}\right)^{\frac{1}{2}} \tag{6.3}
\end{equation*}
$$

so that X is a Hilbert space.
A solution $(\vec{u}, p) \in X$ realizing the min of M satisfies

$$
\begin{cases}(\operatorname{grad} \vec{u}, \operatorname{grad} \vec{v})_{L^{2}}+\lambda\left(\vec{u}-\overrightarrow{\operatorname{grad} p, \vec{v})_{L^{2}}=(\vec{f}, \vec{v}),}\right. & \forall \vec{v} \in H_{0}^{1}(\Omega)^{n}, \tag{6.4}\\ \lambda\left(\vec{u}-\overrightarrow{\operatorname{grad} p, \operatorname{grad} q)_{L^{2}}=(g, q),}\right. & \forall q \in H^{1}(\Omega)\end{cases}
$$

Let

$$
\begin{equation*}
\Phi((\vec{u}, p),(\vec{v}, q))=(\operatorname{grad} \vec{u}, \operatorname{grad} \vec{v})_{L^{2}}+\lambda(\vec{u}-\operatorname{grad} p, \vec{v}-\operatorname{grad} q)_{L^{2}} . \tag{6.5}
\end{equation*}
$$

Thus (6.4) reads: Find $(\vec{u}, p) \in X$ s.t.

$$
\begin{equation*}
\Phi((\vec{u}, p),(\vec{v}, q))=(\vec{f}, \vec{v})_{L^{2}}+(g, q)_{L^{2}}, \quad \forall(\vec{v}, q) \in X \tag{6.6}
\end{equation*}
$$

Proposition 6.2 The bilinear form $\Phi: X \times X \rightarrow \mathbb{R}$ is coercive and continuous on X : with the Poincaré inequality (9.28) we have

$$
\left\{\begin{array}{l}
\exists \alpha_{\Phi}>0, \quad \forall(\vec{v}, q) \in X, \quad \Phi((\vec{v}, q),(\vec{v}, q)) \geq \alpha_{\Phi}\|(\vec{v}, q)\|_{X}^{2}, \quad \text { et } \quad \alpha_{\Phi} \underset{\lambda \rightarrow \infty}{\sim} \frac{1}{c_{\Omega}}, \tag{6.7}\\
\exists C>0, \quad \forall(\vec{u}, p),(\vec{v}, q) \in X, \quad \Phi((\vec{u}, p),(\vec{v}, q)) \leq C\|(\vec{u}, p)\|_{X}\|(\vec{v}, q)\|_{X}, \quad \text { et } \quad C_{\lambda \rightarrow \infty}^{=} O(\lambda) .
\end{array}\right.
$$

And problem (6.6) is well posed.
Proof. Bi-linearity. Since Φ is symmetric (trivial), that is $\Phi((\vec{u}, p),(\vec{v}, q))=\Phi((\vec{v}, q),(\vec{u}, p))$, we have to prove that $\Phi\left(\left(\vec{u}_{1}, p_{1}\right)+\alpha\left(\vec{u}_{2}, p_{2}\right),(\vec{v}, q)\right)=\Phi\left(\left(\vec{u}_{1}, p_{1}\right),(\vec{v}, q)\right)+\alpha \Phi\left(\left(\vec{u}_{2}, p_{2}\right),(\vec{v}, q)\right)$: trivial.

Coercivity. If $\kappa>0$ then, with (9.28) :

$$
\begin{aligned}
\Phi((\vec{v}, q),(\vec{v}, q)) & =\|\operatorname{grad} \vec{v}\|_{L^{2}}^{2}+\lambda\|\vec{v}-\operatorname{grad} q\|_{L^{2}}^{2} \\
& \geq\left[(1-\kappa)\|\operatorname{grad} \vec{v}\|_{L^{2}}+c_{\Omega} \kappa\|\vec{v}\|_{L^{2}}^{2}\right]+\lambda\left[\|\vec{v}\|_{L^{2}}^{2}+\|\operatorname{grad} q\|_{L^{2}}^{2}-2\|\vec{v}\|_{L^{2}}\|q\|_{L^{2}}\right]
\end{aligned}
$$

Let $x=\|\vec{v}\|_{L^{2}}$ and $y=\|\overrightarrow{\operatorname{grad}} q\|_{L^{2}}$. We have

$$
c_{\Omega} \kappa x^{2}+\lambda(x-y)^{2} \geq \frac{\lambda c_{\Omega} \kappa}{\lambda+c_{\Omega} \kappa} y^{2}
$$

with $c_{\max }=\frac{\lambda c_{\Omega} \kappa}{\lambda+c_{\Omega} \kappa}$ the largest constant possible ($c_{\max }$ is largest c s.t. $c_{\Omega} \kappa x^{2}+\lambda(x-y)^{2} \geq c y^{2}$: easy check). Thus

$$
\Phi((\vec{v}, q),(\vec{v}, q)) \geq(1-\kappa)\|\operatorname{grad} \vec{v}\|_{L^{2}}+\frac{\lambda c_{\Omega} \kappa}{\lambda+c_{\Omega} \kappa}\|\operatorname{grad} q\|_{L^{2}} .
$$

And the "best" α_{Φ} (the largest possible) is obtained by choosing κ s.t. $1-\kappa=\frac{\lambda c_{\Omega} \kappa}{\lambda+c_{\Omega} \kappa}$, i.e. κ solution of $\kappa^{2}+b \kappa-\frac{\lambda}{c_{\Omega}}=0$ where $b=\lambda \frac{c_{\Omega}+1}{c_{\Omega}}-1$. The discriminant is $b^{2}+4 \frac{\lambda}{c_{\Omega}}$, and the positive root is $\kappa=$ $\frac{b}{2}\left(-1+\sqrt{1+4 \frac{\lambda}{b^{2} c_{\Omega}}}\right)$. And for $\lambda \gg 1$, we have $b \simeq \lambda$, thus $4 \frac{\lambda}{b^{2} c_{\Omega}} \simeq 4 \frac{1}{\lambda c_{\Omega}}$, thus $-1+\sqrt{1+4 \frac{\lambda}{b^{2} c_{\Omega}}} \simeq \frac{2}{\lambda c_{\Omega}}$, so $\kappa \simeq \frac{1}{c_{\Omega}}$ in the vicinity of $\lambda=\infty$.

Continuity: Easy check.
Remark 6.3 For the associated numerical approximation with finite elements, it λ is "large" then difficulties are expected, since $C=O(\lambda)$. Indeed, the conditioning of the associated matrix is $\simeq \frac{C}{\alpha_{\Phi}}=0(\lambda)$, and this conditioning explodes with λ. However, a bad choice of the discrete spaces leads to a much faster explosion than expected, see proposition 6.5

6.2 The coercivity constant for p

For the analysis of the locking phenomenon (due to a "bad choice" of the discrete spaces), let us look at the coercivity constant for p (where λ appears):
Proposition 6.4 If $(\vec{v}, q) \in X$ then, with (9.28),

$$
\begin{equation*}
\Phi((\vec{v}, q),(\vec{v}, q)) \geq c_{\Omega} \frac{\lambda}{\lambda+c_{\Omega}}\|\overrightarrow{\operatorname{grad} q}\|_{L^{2}}^{2} \tag{6.8}
\end{equation*}
$$

and

$$
\begin{equation*}
c_{\Omega} \frac{\lambda}{\lambda+c_{\Omega}} \simeq c_{\Omega} \quad \text { as } \quad \lambda \rightarrow \infty \tag{6.9}
\end{equation*}
$$

Proof. Modification or the previous proof:

$$
\Phi((\vec{v}, q),(\vec{v}, q)) \geq c_{\Omega}\|\vec{v}\|_{L^{2}}^{2}+\lambda\left[\|\vec{v}\|_{L^{2}}^{2}+\|\overrightarrow{\operatorname{rad}} q\|_{L^{2}}^{2}-2\|\vec{v}\|_{L^{2}}\|q\|_{L^{2}}\right] \geq \alpha_{p}\|\overrightarrow{\operatorname{grad}} q\|_{L^{2}}^{2}
$$

and the largest α_{p} possible is $\alpha_{p}=c_{\Omega} \frac{\lambda}{\lambda+c_{\Omega}}$ (has to satisfy " $c_{\Omega} x^{2}+\lambda(x-y)^{2} \geq \alpha_{p} y^{2}$).

6.3 The discrete problem

Let $V_{h} \subset H_{0}^{1}(\Omega)^{n}$ be a finite dimension subspace. Let $\Pi_{V_{h}}: L^{2}(\Omega)^{n} \rightarrow V_{h}$ be the $(\cdot, \cdot)_{L^{2}}$ projection onto V_{h}, that is,

$$
\forall \vec{v} \in H_{0}^{1}(\Omega)^{n}, \quad \forall \vec{w}_{h} \in V_{h}, \quad\left(\Pi_{V_{h}} \vec{v}, \vec{w}_{h}\right)_{L^{2}(\Omega)}=\left(\vec{v}, \vec{w}_{h}\right)_{L^{2}(\Omega)} .
$$

Let $Q_{h} \subset H_{0}^{1}(\Omega)$ be a finite dimension subspace.
Let $X_{h}=V_{h} \times Q_{h}$. The discrete problem associated to (6.6) is: Find $\left(\vec{u}_{h}, p_{h}\right) \in X_{h}$ s.t.

$$
\begin{equation*}
\Phi\left(\left(\vec{u}_{h}, p_{h}\right),\left(\vec{v}_{h}, q_{h}\right)\right)=\left(\vec{f}, \vec{v}_{h}\right)+\left(g, q_{h}\right), \quad \forall\left(\vec{v}_{h}, q_{h}\right) \in X_{h} \tag{6.10}
\end{equation*}
$$

Proposition 6.5 If $\left(\vec{v}_{h}, q_{h}\right) \in X_{h}$ then

$$
\begin{equation*}
\Phi\left(\left(\vec{v}_{h}, q_{h}\right),\left(\vec{v}_{h}, q_{h}\right)\right) \geq c_{\Omega} \frac{\lambda}{\lambda+c_{\Omega}}\left\|\operatorname{grad} q_{h}\right\|_{L^{2}}^{2}+\lambda \frac{\lambda}{\lambda+c_{\Omega}}\left\|\operatorname{grad} q_{h}-\Pi_{V_{h}} \operatorname{grad} q_{h}\right\|_{L^{2}(\Omega)}^{2} \tag{6.11}
\end{equation*}
$$

to be compared with (6.8).
Illustration: If V_{h} is "small relatively to Q_{h} " so that for some q_{h} the real $\left\|\operatorname{grad} q_{h}-\Pi_{V_{h}} \operatorname{grad} q_{h}\right\|_{L^{2}(\Omega)}$ does not vanish (fast enough with h) then the right hand side of (6.11) increases with λ, to compare with (6.9). And the solution $\left(u_{n}, p_{h}\right) \in X_{h}$ is bounded by the inverse constant that decreases with λ, thus (u_{h}, p_{h}) decreases to zero as λ increases: We get the "locking" phenomenon.

Proof. Let $\left(\vec{u}_{h}, p_{h}\right)$ and $\left(\vec{v}_{h}, q_{h}\right) \in X_{h}$. Then

$$
\begin{aligned}
\Phi\left(\left(\vec{u}_{h}, p_{h}\right),\left(\vec{v}_{h}, q_{h}\right)\right)= & \left(\operatorname{grad} \vec{u}_{h}, \operatorname{grad} \vec{v}_{h}\right)_{L^{2}}+\lambda\left(\operatorname{grad} p_{h}-\vec{u}_{h}, \overrightarrow{\operatorname{grad}} q_{h}-\vec{v}_{h}\right)_{L^{2}} \\
= & \left(\operatorname{grad} \vec{u}_{h}, \operatorname{grad} \vec{v}_{h}\right)_{L^{2}}+\lambda\left(\overrightarrow{\operatorname{grad}} p_{h}-\Pi_{V_{h}} \operatorname{grad} p_{h}, \overrightarrow{\operatorname{grad}} q_{h}-\Pi_{V_{h}} \operatorname{grad} q_{h}\right)_{L^{2}} \\
& +\lambda\left(\Pi_{V_{h}} \operatorname{grad} p_{h}-\vec{u}_{h}, \Pi_{V_{h}} \operatorname{grad} q_{h}-\vec{v}_{h}\right)_{L^{2}} .
\end{aligned}
$$

Thus

$$
\Phi\left(\left(\vec{v}_{h}, q_{h}\right),\left(\vec{v}_{h}, q_{h}\right)\right) \geq c_{\Omega} \frac{\lambda}{\lambda+c_{\Omega}}\left\|\Pi_{V_{h}} \operatorname{grad} q_{h}\right\|_{L^{2}}^{2}+\lambda\left\|\operatorname{grad} q_{h}-\Pi_{V_{h}} \operatorname{grad} q_{h}\right\|_{L^{2}}^{2}
$$

see previous \S computation. And Pythagoras give (6.5).
Remark 6.6 The term $\operatorname{grad} q_{h}-\Pi_{V_{h}}$ grad q_{h} is also a problem for the Stokes equations, see \S 3.6.

6.4 An optimal correction

Due to the choice of V_{h} and Q_{h}, we eventually have too much of coercivity, cf. (6.5), so we decide to get rid of it. That is, we modify (6.1) to get: Find $(\vec{u}, p) \in V_{h} \times Q_{h}$ realizing the minimum of

$$
\begin{align*}
M_{h}(\vec{v}, q)= & \frac{1}{2}\left\|\operatorname{grad} \vec{v}_{h}\right\|_{L^{2}}^{2}+\frac{\lambda}{2}\left(\left\|\vec{v}_{h}-\operatorname{grad} q_{h}\right\|_{L^{2}}^{2}-\lambda \frac{\lambda}{\lambda+c_{\Omega}}\left\|\operatorname{grad} q_{h}-\Pi_{V_{h}} \operatorname{grad} q_{h}\right\|_{L^{2}}^{2}\right) \tag{6.12}\\
& -\left(\vec{f}, \vec{v}_{h}\right)_{L^{2}}-\left(g, q_{h}\right)_{L^{2}}
\end{align*}
$$

Thus Φ_{h} has been transformed into

$$
\begin{aligned}
\Phi_{h}\left(\left(\vec{u}_{h}, p_{h}\right),\left(\vec{v}_{h}, q_{h}\right)\right)= & \left(\operatorname{grad} \vec{u}_{h}, \operatorname{grad} \vec{v}_{h}\right)_{L^{2}}+\lambda\left(\vec{u}_{h}-\overrightarrow{\left.\operatorname{grad} p_{h}, \vec{v}-\overrightarrow{\operatorname{grad}} q_{h}\right)_{L^{2}}}\right. \\
& -\frac{\lambda^{2}}{\lambda+c_{\Omega}}\left(\overrightarrow{\operatorname{grad}} p_{h}-\Pi_{V_{h}} \overrightarrow{\operatorname{grad}} p_{h}, \overrightarrow{\operatorname{grad}} q_{h}-\Pi_{V_{h}} \overrightarrow{\operatorname{grad}} q_{h}\right)_{L^{2}}
\end{aligned}
$$

and the problem reads: Find $\left(\vec{u}_{h}, p_{h}\right) \in V_{h} \times Q_{h}$ s.t., for all $\left(\vec{v}_{h}, q_{h}\right) \in V_{h} \times Q_{h}$,

$$
\Phi_{h}\left(\left(\vec{u}_{h}, p_{h}\right),\left(\vec{v}_{h}, q_{h}\right)\right)=\left(\vec{f}, \vec{v}_{h}\right)_{L^{2}}+\left(g, q_{h}\right)_{L^{2}}
$$

To solve this problem, we need to compute $\Pi_{V_{h}} \operatorname{grad} p_{h}$: If the $V_{h}=P_{1}$-continuous finite elements is made, the computation amounts to inverse a diagonal matrix, thanks to the mass-lumping technique, thus is costless.

Computation: we have to compute $\left(\vec{u}_{h}, p_{h}\right) \in V_{h} \times Q_{h}$ s.t., for all $\left(\vec{v}_{h}, q_{h}\right) \in V_{h} \times Q_{h}$,

$$
\left\{\begin{array}{l}
\left(\operatorname{grad} \vec{u}_{h}, \operatorname{grad} \vec{v}_{h}\right)_{L^{2}}+\lambda\left(\vec{u}_{h}-\operatorname{grad} p_{h}, \vec{v}_{h}\right)_{L^{2}}=\left(\vec{f}, \vec{v}_{h}\right)_{L^{2}}, \\
-\lambda\left(\vec{u}_{h}-\overrightarrow{\operatorname{grad}} p_{h}, \operatorname{grad} q_{h}\right)_{L^{2}}-\lambda \frac{\lambda}{\lambda+c_{\Omega}}\left(\operatorname{grad} p_{h}-\Pi_{V_{h}} \operatorname{grad} p_{h}, \overrightarrow{\operatorname{grad} q_{h}}\right)_{L^{2}}=\left(g, q_{h}\right)_{L^{2}}
\end{array}\right.
$$

Introducing $\vec{w}_{h}=\Pi_{V_{h}} \operatorname{grad} p_{h}$, we have to find $\left(\vec{u}_{h}, p_{h}, \vec{w}_{h}\right) \in V_{h} \times Q_{h} \times V_{h}$ s.t., for all $\left(\vec{v}_{h}, q_{h}\right) \in V_{h} \times Q_{h}$,

$$
\left\{\begin{array}{l}
\left(\operatorname{grad} \vec{u}_{h}, \operatorname{grad} \vec{v}_{h}\right)_{L^{2}}+\lambda\left(\vec{u}_{h}, \vec{v}_{h}\right)_{L^{2}}-\lambda\left(\operatorname{grad} p_{h}, \vec{v}_{h}\right)_{L^{2}}=\left(\vec{f}, \vec{v}_{h}\right)_{L^{2}} \tag{6.13}\\
-\lambda\left(\vec{u}_{h}, \operatorname{grad} q_{h}\right)_{L^{2}}+\frac{c_{\Omega} \lambda}{\lambda+c_{\Omega}}\left(\operatorname{grad} p_{h}, \operatorname{grad} q_{h}\right)_{L^{2}}+\lambda \frac{\lambda}{\lambda+c_{\Omega}}\left(\vec{w}_{h}, \operatorname{grad} q_{h}\right)_{L^{2}}=\left(g, q_{h}\right)_{L^{2}} \\
\left(\operatorname{grad} p_{h}, \vec{w}_{h}^{\prime}\right)_{L^{2}}-\left(\vec{w}_{h}, \vec{w}_{h}^{\prime}\right)_{L^{2}}=0
\end{array}\right.
$$

This method gives optimal convergence results. E.g., for P_{1}-continuous finite elements of \vec{u}_{h} and p_{h}, we get an $O(h)$ convergence.

6.5 Classical treatment of the locking

6.5.1 Initial problem

See e.g. Chapelle [10, Brezzi and Fortin [8]. The variable

$$
\begin{equation*}
\vec{\gamma}=\lambda(\vec{u}-\operatorname{grad} p) \tag{6.14}
\end{equation*}
$$

is introduced. Then problem (6.4) becomes: Find $(\vec{u}, p, \vec{\gamma}) \in H_{0}^{1}(\Omega)^{n} \times H_{0}^{1}(\Omega) \times Y$ s.t.

$$
\left\{\begin{array}{l}
a((\vec{u}, p),(\vec{v}, q))+b((\vec{v}, q), \vec{\gamma})=(\vec{f}, \vec{v})_{L^{2}}+(g, q)_{L^{2}}, \quad \forall(\vec{v}, q) \in X \tag{6.15}\\
b((\vec{u}, p), \vec{\delta})-\frac{1}{\lambda}\langle\vec{\delta}, \vec{\gamma}\rangle_{H^{-1}, H_{0}^{1}}=0, \quad \forall \vec{\delta} \in Y
\end{array}\right.
$$

with

$$
\begin{cases}Y=\left\{\vec{\delta} \in\left(H^{-1}(\Omega)\right)^{n}: \operatorname{div} \vec{\delta} \in H^{-1}(\Omega)\right\} \tag{6.16}\\ a(\cdot, \cdot): X \times X \rightarrow \mathbb{R}: & a((\vec{u}, p),(\vec{v}, q))=(\operatorname{grad} \vec{u}, \operatorname{grad} \vec{v})_{L^{2}}, \\ b(\cdot, \cdot): X \times Y \rightarrow \mathbb{R}: & b((\vec{u}, p), \vec{\delta})=\langle\vec{\delta}, \vec{u}\rangle_{H^{-1}, H_{0}^{1}}-\langle\operatorname{div} \vec{\delta}, p\rangle_{H^{-1}, H_{0}^{1}} .\end{cases}
$$

(And $(6.15)_{2}$ gives $\vec{u}-\operatorname{grad} p-\frac{1}{\lambda} \vec{\gamma}=0$.) And it is shown that Y is a Banach space for the norm

$$
\|\vec{\delta}\|_{Y} \stackrel{\text { def }}{=}\|\vec{\delta}\|_{H^{-1}(\Omega)^{n}}+\|\operatorname{div} \vec{\delta}\|_{H^{-1}(\Omega)}
$$

Remark 6.7 Y is the space corresponding to $\frac{1}{\lambda}=0$ (i.e. λ "infinitely large"), cf. Kirchhoff-Love shell model:

$$
\left\{\begin{array}{l}
a((\vec{u}, p),(\vec{v}, q))+b((\vec{v}, q), \vec{\gamma})=(\vec{f}, \vec{v})_{L^{2}}+(g, q)_{L^{2}}, \quad \forall(\vec{v}, q) \in X, \tag{6.17}\\
b((\vec{u}, p), \vec{\delta})=0, \quad \forall \vec{\delta} \in Y
\end{array}\right.
$$

to be compared with (6.15).
For a discretization with finite elements, finite dimensional spaces are often chosen s.t. $V_{h} \subset L^{2}(\Omega)^{n}$, $Y_{h} \subset L^{2}(\Omega)^{n}$ and $Q_{h} \subset C^{0}(\Omega ; \mathbb{R}) ;$ And then (6.15) is meaningful in $V_{h} \times Q_{h} \times Y_{h}$ with $b\left(\left(\vec{u}_{h}, p_{h}\right), \vec{\delta}_{h}\right)=$ $\left(\vec{\delta}_{h}, \vec{u}_{h}-\operatorname{grad} p_{h}\right)_{L^{2}(\Omega)}$.

Let $B: X \rightarrow Y^{\prime}$ be the operator associated to $b(\cdot, \cdot)$, that is, $\langle B(\vec{v}, q), \vec{\delta}\rangle_{H_{0}^{1}, H^{-1}}:=b((\vec{v}, q), \vec{\delta})$, i.e.,

$$
B(\vec{v}, q)=\vec{v}-\operatorname{grad} q .
$$

Then, with Poincaré inequality, it is easy to check that $a(\cdot, \cdot)$ is coercive on $\operatorname{Ker}(B)=\{(\vec{v}, q) \in X: \vec{v}=$ $\overrightarrow{\operatorname{grad}} q\}$.

Then is shown that B is surjective (inf-sup condition), that is,

$$
\exists k>0, \quad \forall \vec{\delta} \in Y, \quad \sup _{(\vec{v}, q) \in X} \frac{b((\vec{v}, q), \vec{\delta})}{\|(\vec{v}, q)\|_{X}\|\vec{\delta}\|_{Y}} \geq k
$$

See e.g. Chapelle [10], Brezzi et Fortin [8].

6.5.2 discrete problem

The discrete inf-sup condition has to be satisfied: this lead to numerous articles. There are two difficulties:

1- An adequat choice of finite element spaces to satisfy the inf-sup condition (it the stabilization is not used), la stabilisation de $\vec{\gamma}_{h}$, ou le choix adequat d'éléments finis compatibles pour satisfaire la condition inf-sup,

2- An adequat choice of finite element spaces to satisfy the coercivity of $a(\cdot, \cdot)$ on the kernel $\operatorname{Ker}\left(B_{h}\right)$ (with B_{h} the discrete operator). But this problem can be easily fixed by modiying (6.1) into

$$
\begin{equation*}
\tilde{M}(\vec{v}, q)=\frac{1}{2}\|\operatorname{grad} \vec{v}\|_{L^{2}(\Omega)}^{2}+\frac{1}{2}\|\vec{v}-\operatorname{grad} q\|_{L^{2}(\Omega)}+\frac{\lambda-1}{2}\|\vec{v}-\overrightarrow{\operatorname{grad} q}\|_{L^{2}(\Omega)}-(\vec{f}, \vec{v})_{L^{2}(\Omega)}-(g, q)_{L^{2}(\Omega)} \tag{6.18}
\end{equation*}
$$

that is, by replacing $a(\cdot, \cdot)$, cf. (6.16), with

$$
\tilde{a}((\vec{u}, p),(\vec{v}, q))=(\operatorname{grad} \vec{u}, \operatorname{grad} \vec{v})_{L^{2}}+(\vec{u}-\operatorname{grad} p, \vec{v}-\operatorname{\operatorname {grad}} q)_{L^{2}} .
$$

And we consider (6.15) with $\tilde{a}(\cdot, \cdot)$ instead of $a(\cdot, \cdot)$.
Now $\tilde{a}(\cdot, \cdot)$ is coercive sur X (thanks to (9.28)), thus on $\operatorname{Ker}(B)=\{(\vec{v}, q): \vec{v}=\operatorname{grad} q\}$, and we get a similar problem to the Stokes problem (choice of adequat finite element spaces, or choice of a stabilization).

7 Weak Dirichlet condition

(See Babuška [2] for the initial manuscript.)

7.1 Initial problem

Let $f \in L^{2}(\Omega)$ and $d \in H^{\frac{1}{2}}(\Gamma)$. Let $u_{d} \in H^{1}(\Omega)$ s.t. $u_{d \mid \Gamma}=d$; Such a function u_{d} exists since the trace operator $\Gamma_{0}: H^{1}(\Omega) \rightarrow L^{2}(\Gamma)$ is surjective onto Γ, cf. (9.8). Let $d+H_{0}^{1}(\Omega):=u_{d}+H_{0}^{1}(\Omega)=\left\{u_{d}+v, v \in\right.$ $\left.H_{0}^{1}(\Omega)\right\}$, affine space in $H^{1}(\Omega)$ independent of the choice of u_{d} the reverse image of d by γ_{0} (trivial).

Consider the problem: Find $u \in d+H_{0}^{1}(\Omega)$ s.t.

$$
\left\{\begin{array}{l}
-\Delta u+u=f \quad \text { dans } \Omega, \tag{7.1}\\
u_{\mid \Gamma}=d \quad \text { sur } \Gamma .
\end{array}\right.
$$

Thanks to the Lax-Milgram theorem, this problem is well-posed.

7.2 Mixed problem

The aim is to impose the Dirichlet condition with a Lagrangian multiplier. So the problem becomes: Find $(u, \lambda) \in H^{1}(\Omega) \times H^{-\frac{1}{2}}(\Gamma)$ s.t.

$$
\left\{\begin{array}{l}
(u, v)_{H^{1}(\Omega)}+\langle\lambda, v\rangle_{H^{-\frac{1}{2}}(\Gamma), H^{\frac{1}{2}}(\Gamma)}=(f, v)_{L^{2}(\Omega)}, \quad \forall v \in H^{1}(\Omega) \tag{7.2}\\
\langle u, \mu\rangle_{H^{\frac{1}{2}}(\Gamma), H^{-\frac{1}{2}}(\Gamma)}=\langle d, \mu\rangle_{H^{\frac{1}{2}}(\Gamma), H^{-\frac{1}{2}}(\Gamma)}, \quad \forall \mu \in H^{-\frac{1}{2}}(\Gamma)
\end{array}\right.
$$

If (u, λ) exists in $H^{1}(\Omega) \times H^{-\frac{1}{2}}(\Gamma)$, then we get:

$$
\left\{\begin{array}{l}
-\Delta u+u=f \in L^{2}(\Omega) \tag{7.3}\\
u=d \in H^{\frac{1}{2}}(\Gamma) \\
\lambda=-\frac{\partial u}{\partial n} \in H^{\frac{1}{2}}(\Gamma)
\end{array}\right.
$$

Interpretation of the Lagrangian multiplier: λ is, up to the sign, the force gradu. \vec{n} needed on Γ for u to stay equal to d on Γ.

With

$$
\left\{\begin{align*}
a(u, v) & =(u, v)_{H^{1}(\Omega)} \tag{7.4}\\
b(v, \lambda) & =\langle v, \lambda\rangle_{H^{\frac{1}{2}}(\Gamma), H^{-\frac{1}{2}}(\Gamma)}
\end{align*}\right.
$$

(7.2) has the appearance of (1.1) with $V=H^{1}(\Omega)$ and $Q=H^{-\frac{1}{2}}(\Gamma)$. And $a(\cdot, \cdot)$ is bilinear (trivial) continuous and coercive (it is the $V=H^{1}(\Omega)$-inner product), and $b(\cdot, \cdot)$ is bilinear (trivial) continuous since $|b(v, \lambda)| \leq\|v\|_{H^{\frac{1}{2}(\Gamma)}}\|\lambda\|_{H^{-\frac{1}{2}}(\Gamma)}$ and γ_{0} is continuous (so $\left.\|v\|_{H^{\frac{1}{2}}(\Gamma)} \leq\left\|\gamma_{0}\right\|\|v\|_{H^{1}(\Omega)}\right)$.

We have $Q^{\prime}=H^{\frac{1}{2}}(\Gamma)$, so $B:\left\{\begin{aligned} H^{1}(\Omega) & \rightarrow H^{\frac{1}{2}}(\Gamma) \\ v & \rightarrow B v=\gamma_{0}(v)\end{aligned}\right\}$ is linear continuous (since $b(\cdot, \cdot)$ is bilinear continuous) and surjective (definition of $H^{\frac{1}{2}}(\Gamma)$), thus $\operatorname{Im}\left(B^{t}\right)$ is closed in $V^{\prime}=H^{1}(\Omega)^{\prime}$, with B^{t} : $\left\{\begin{aligned} H^{-\frac{1}{2}}(\Gamma) & \rightarrow H^{1}(\Omega)^{\prime} \\ \lambda & \rightarrow B^{t} \lambda\end{aligned}\right\}$ defined by $\left\langle B^{t} \lambda, v\right\rangle_{H^{1}(\Omega)^{\prime}, H^{1}(\Omega)}=\langle v, \lambda\rangle_{H^{\frac{1}{2}}(\Gamma), H^{-\frac{1}{2}}(\Gamma)}$. Thus

$$
\begin{equation*}
\exists k>0, \forall \lambda \in H^{-\frac{1}{2}}(\Gamma),\left\|B^{t} \lambda\right\|_{H^{1}(\Omega)^{\prime}} \geq k\|\lambda\|_{H^{-\frac{1}{2}}(\Gamma) / \operatorname{Ker}^{t}} . \tag{7.5}
\end{equation*}
$$

(That is, $\exists k>0, \inf _{\lambda \in H^{-\frac{1}{2}}(\Gamma)} \sup _{v \in H^{1}(\Omega)}\left|b\left(\frac{v}{\|v\|_{H^{1}(\Omega)} \|}, \frac{\lambda}{\lambda \|_{H^{-\frac{1}{2}}(\Gamma)}}\right)\right| \geq k$.)
Remark 7.1 The computation of λ may give disappointing results since the control for λ is done with the $\|\cdot\|_{H^{-\frac{1}{2}}(\Gamma)}$-norm, cf. (7.5) (not even a $\|\cdot\|_{L^{2}(\Gamma)}$ control). So numerical problems are expected.
Remark 7.2 This mixed problem leads to "transmission problems" (or hybrid problems) with "mortar finite elements", see Bernardi, Maday, Patera.

The associated Lagrangian is (saddle point problem)

$$
\begin{equation*}
L(u, \lambda)=\frac{1}{2}\left(\|\overrightarrow{\operatorname{grad}} u\|_{L^{2}(\Omega)}^{2}+\|u\|_{L^{2}(\Omega)}^{2}\right)+\langle u-d, \lambda)_{H^{\frac{1}{2}}(\Gamma), H^{-\frac{1}{2}}(\Gamma)}-(f, v)_{L^{2}(\Omega)}, \tag{7.6}
\end{equation*}
$$

7.3 Discrete problem

Let $V_{h} \subset H^{1}(\Omega)$ and $\Lambda_{h} \subset H^{-\frac{1}{2}}(\Gamma)$ be finite dimension spaces. The discrete problem relative to (7.2) is: Find $\left(u_{h}, \lambda_{h}\right) \in V_{h} \times \Lambda_{h}$ s.t.

$$
\left\{\begin{array}{lll}
\left(u_{h}, v_{h}\right)_{H^{1}(\Omega)}+\left(v_{h}, \lambda_{h}\right)_{L^{2}(\Gamma)} & =\left(f, v_{h}\right)_{L^{2}(\Omega)}, & \tag{7.7}
\end{array} \quad \forall v_{h} \in V_{h}, ~, ~=\left(d, \mu_{h}\right)_{L^{2}(\Gamma)}, ~ 未 r ~ \forall \mu_{h} \in \Lambda_{h} .\right.
$$

7.4 Finite elements $P_{k}-C^{0}$: unstable

7.4.1 The discrete inf-sup condition

Consider the Lagrange finite elements $V_{h}=P_{k}-C^{0}$ in Ω and $\Lambda_{h}=\gamma_{0}\left(V_{h}\right) P_{k}-C^{0}$ on Γ. The discrete (trace) operator $B_{h}=\gamma_{0 \mid \Gamma}:\left\{\begin{aligned}\left(V_{h},\|\cdot\|_{H^{1}(\Omega)}\right) & \rightarrow\left(\Lambda_{h},\|\cdot\|_{H^{\frac{1}{2}(\Gamma)}}\right) \\ v_{h} & \rightarrow \gamma_{0}\left(v_{h}\right)=v_{h \mid \Gamma}\end{aligned}\right\}$ is continuous and surjective (trivial here with $P_{k}-C^{0}$ finite elements for both V_{h} and Λ_{h}), thus (7.5) holds with some k_{h} instead of k, and Q_{h} instead of Q. But the control on λ_{h} is very weak (a $H^{-\frac{1}{2}}(\Gamma)$ control), and k_{h} a priori depends on h.

7.4.2 Barbosa et Hughes

(See Barbosa and Hughes [3], Pitkäranta [27, Stenberg (31).
A finite element mesh \mathcal{T}_{h} is defined in Ω, and the trace of this mesh on Γ will be used as a mesh on Γ.
Barbosa and Hughes stabilize the Lagrangian multiplier λ with its value $\lambda=-\frac{\partial u}{\partial n}$, cf. (7.3). Thus the problem now reads: Find $\left(u_{h}, \lambda_{h}\right) \in V_{h} \times \Lambda_{h}$ s.t., for all $\left(v_{h}, \mu_{h}\right) \in V_{h} \times \Lambda_{h}$,

$$
\left\{\begin{array}{l}
\left(u_{h}, v_{h}\right)_{H^{1}(\Omega)}+\int_{\Gamma} v_{h} \lambda_{h} d \Gamma-\alpha h \int_{\Gamma}\left(\lambda_{h}+\frac{\partial u_{h}}{\partial n}\right) \frac{\partial v_{h}}{\partial n} d \Gamma=\left(f, v_{h}\right)_{L^{2}(\Omega)} \tag{7.8}\\
\int_{\Gamma} u_{h} \mu_{h} d \Gamma-\alpha h \int_{\Gamma}\left(\lambda_{h}+\frac{\partial u_{h}}{\partial n}\right) \mu_{h} d \Gamma=\int_{\Gamma} d \mu_{h} d \Gamma
\end{array}\right.
$$

with α a constant to be chosen, corresponding to the saddle point of the modified Lagrangian

$$
\begin{equation*}
L_{h}(u, \lambda)=L(u, \lambda)-\alpha h\left\|\lambda+\frac{\partial u}{\partial n}\right\|_{L^{2}(\Gamma)}^{2} \tag{7.9}
\end{equation*}
$$

cf. (7.6). See Stenberg (31].
We then get the "penalized" problem, written here as the matrix problem

$$
\left(\begin{array}{cc}
A & B^{t} \tag{7.10}\\
B & -\alpha C
\end{array}\right) \cdot\binom{\vec{u}}{p}=\binom{\vec{f}}{\vec{g}} .
$$

Theorem 7.3 (Barbosa and Hughes [3], Pitkäranta [27].) The mesh \mathcal{T}_{h} is supposed to be quasi-uniform, that is, the following inverse inequality is true:

$$
\begin{equation*}
\exists C_{i}>0, \quad \forall v_{h} \in V_{h}, \quad h^{\frac{1}{2}}\left\|\frac{\partial v_{h}}{\partial n}\right\|_{L^{2}(\Gamma)} \leq C_{i}\left\|\operatorname{grad} v_{h}\right\|_{L^{2}(\Omega)} \tag{7.11}
\end{equation*}
$$

And α is supposed small enough (not to destroy the coercivity for u), namely:

$$
\begin{equation*}
0<\alpha<\frac{1}{C_{i}} \tag{7.12}
\end{equation*}
$$

Then the stabilized problem (7.8) is well posed, and for $P_{k}-C^{0}$ finite elements, as soon as the exact solution u is in $H^{k+1}(\Omega)$, and we get the usual a priori estimate

$$
\left\|u-u_{h}\right\|_{H^{1}(\Omega)} \leq C h^{k}\|u\|_{H^{k+1}(\Omega)}
$$

C being a constant independent of h.
Proof. See Barbosa-Hughes [3] and Stenberg [31].
Remark 7.4 The inequality (7.11) also reads

$$
h \int_{\Gamma}(\operatorname{grad} v \cdot \vec{n})^{2} d \Gamma \leq C_{i}^{2} \int_{\Omega}\|\operatorname{grad} v\|_{\mathbb{R}^{n}}^{2} d \Omega
$$

where h on the left hand side is expected: $\left(h \int_{\Gamma}\right)$ has a volume dimension, same dimension as $\left(\int_{\Omega}\right)$, for a quasi-uniform mesh.

7.4.3 Multiplier elimination: Nitsche method

Stenberg 31 has shown that Barbosa and Hughes [3] method is equivalent to Nitsche [26] method when $\Lambda_{h}=P_{0}\left(\Gamma_{h}\right)$ and $V_{h}=P_{1}\left(\Omega_{h}\right)$ (when the mesh on Γ is the trace of the mesh in Ω): Find $u_{h} \in V_{h}$ s.t., for all $v_{h} \in V_{h}$,

$$
\left(u_{h}, v_{h}\right)_{H^{1}(\Omega)}-\left\langle\frac{\partial u_{h}}{\partial n}, v_{h}\right\rangle_{\Gamma}-\left\langle\frac{\partial v_{h}}{\partial n}, u_{h}-d\right\rangle_{\Gamma}+\gamma \sum_{E \in \mathcal{E}_{h}} \frac{1}{h_{E}}\left\langle u_{h}-d, v_{h}\right\rangle_{E}=\left(f, v_{h}\right)_{L^{2}(\Omega)}
$$

for some $\gamma>0$, i.e., find $u_{h} \in V_{h}$ s.t., for all $v_{h} \in V_{h}$,

$$
\left\{\begin{align*}
\left(u_{h}, v_{h}\right)_{H^{1}(\Omega)}-\left\langle\frac{\partial u_{h}}{\partial n}, v_{h}\right\rangle_{\Gamma}-\left\langle\frac{\partial v_{h}}{\partial n}, u_{h}\right\rangle_{\Gamma}+\gamma \sum_{E \in \mathcal{E}_{h}} \frac{1}{h_{E}}\left\langle u_{h}, v_{h}\right\rangle_{E} \tag{7.13}\\
=\left(f, v_{h}\right)_{L^{2}(\Omega)}-\left\langle\frac{\partial v_{h}}{\partial n}, d\right\rangle_{\Gamma}+\gamma \sum_{E \in \mathcal{E}_{h}} \frac{1}{h_{E}}\left\langle d, v_{h}\right\rangle_{E}
\end{align*}\right.
$$

We then get $u_{\Gamma}=d$. This method is simpler to compute since no Lagrangian multiplier intervenes.
Proposition 7.5 If (7.11), if $\gamma>C_{i}$, if $V_{h}=P_{k}-C^{0}$ and $u \in H^{k+1}(\Omega)$, then (7.13) gives the usual result:

$$
\left\|u-u_{h}\right\|_{H^{1}(\Omega)} \leq C h^{k}\|u\|_{H^{k+1}(\Omega)}
$$

Proof. See Stenberg [31].
Comparison of the method of Nitsche with the method of Barbosa and Hughes : (7.8) 2 gives

$$
\lambda_{h}=-\Pi_{\Lambda_{h}}\left(\frac{\partial u_{h}}{\partial n}\right)+\frac{1}{\alpha h}\left(u_{h}-d\right)
$$

Thus (7.8) ${ }_{1}$ becomes

$$
\begin{aligned}
&\left(u_{h}, v_{h}\right)_{H^{1}(\Omega)}-\int_{\Gamma} \Pi_{\Lambda_{h}}\left(\frac{\partial u_{h}}{\partial n}\right) v_{h} d \Gamma-\int_{\Gamma} \Pi_{\Lambda_{h}}\left(\frac{\partial v_{h}}{\partial n}\right) u_{h} d \Gamma+\frac{1}{\alpha h} \int_{\Gamma} u_{h} v_{h} d \Gamma \\
&-\alpha h\left(\int_{\Gamma} \frac{\partial u_{h}}{\partial n} \frac{\partial v_{h}}{\partial n}-\Pi_{\Lambda_{h}} \frac{\partial u_{h}}{\partial n} \Pi_{\Lambda_{h}} \frac{\partial v_{h}}{\partial n} d \Gamma\right) \\
&=\left(f, v_{h}\right)_{L^{2}(\Omega)}-\int_{\Gamma} g \Pi_{\Lambda_{h}} \frac{\partial v_{h}}{\partial n} d \Gamma+\frac{1}{\alpha h} \int_{\Gamma} g v_{h} d \Gamma
\end{aligned}
$$

With $\Lambda_{h}=P_{0}$ and $V_{h}=P_{1}$ we then get $\Pi_{\Lambda_{h}}\left(\frac{\partial u_{h}}{\partial n}\right)=\frac{\partial u_{h}}{\partial n}$, and then (7.13).

Part III Theory

Most of the results can be found in Brézis [6.

8 The open mapping theorem

8.1 Notations

If E and F are linear spaces, a map $T: E \rightarrow F$ is linear iff $T\left(x_{1}+\lambda x_{2}\right)=T\left(x_{1}\right)+\lambda T\left(x_{2}\right)$ for all $x_{1}, x_{2} \in E$ and all $\lambda \in \mathbb{R}$; And then $T(x)$ is denoted $T . x$ or $T x$.

Let $\left(E,\|\cdot\|_{E}\right)$ be a normed space. Let $B_{E}(x, \rho)=\left\{x^{\prime} \in E ;\left\|x^{\prime}-x\right\|_{E}<\rho\right\}$ the ball of radius $\rho>0$ centered at $x \in E$.

If $\left(E,\|\cdot\|_{E}\right)$ and $\left(F,\|\cdot\|_{F}\right)$ are two normed spaces, if $T:\left\{\begin{aligned} E & \rightarrow F \\ x & \rightarrow T(x)\end{aligned}\right\}$ is a linear map, then T is said to be continuous (or bounded) iff

$$
\begin{equation*}
\exists c>0, \quad \forall x \in E, \quad\|T \cdot x\|_{F} \leq c\|x\|_{E} . \quad \text { and then } \quad\|T\|:=\sup _{x \in B_{E}(0,1)}\|T \cdot x\|_{F} \tag{8.1}
\end{equation*}
$$

In the sequel, the space E and F will be Banach spaces (complete for the norm in use).
Let $\mathcal{L}(E ; F)$ be the set of linear continuous mapping from E to F. Then

$$
\|\cdot\|_{\mathcal{L}(E ; F)}:\left\{\begin{align*}
\mathcal{L}(E ; F) & \rightarrow \mathbb{R} \tag{8.2}\\
T & \rightarrow\|T\|_{\mathcal{L}(E ; F)}:=\sup _{x \in B_{E}(0,1)}\|T \cdot x\|_{F} \stackrel{\text { denoted }}{=}\|T\|
\end{align*}\right.
$$

define a norm in $\mathcal{L}(E ; F)$ (easy check), and $(\mathcal{L}(E ; F),\|\cdot\|)$ is a Banach space (check: If $\left(T_{n}\right)_{\mathbb{N}^{*}}$ is a Cauchy sequence, that is $\left\|T_{n}-T_{m}\right\| \longrightarrow_{n, m \rightarrow \infty} 0$, then, for any $x \in E,\left\|\left(T_{n}-T_{m}\right)(x)\right\|_{F} \longrightarrow_{n, m \rightarrow \infty} 0$, thus $\left(T_{n}(x)\right)_{\mathbb{N}^{*}}$ is a Cauchy sequence in F complete, thus converge to a $y_{x} \in F$; Then define $T: x \in E \rightarrow$ $T(x)=y_{x}$: It is easy to check that T is linear and continuous with $\left\|T-T_{n}\right\| \longrightarrow_{n \rightarrow \infty} 0$.)

Let $E^{\prime}:=\mathcal{L}(E ; \mathbb{R})$, called the dual of E (the set of linear continuous real valued functions, \mathbb{R} being provided with its usual norm). For $\ell \in E^{\prime}$ and $x \in E$ denote:

$$
\begin{equation*}
\ell(x)=\ell . x=\langle\ell, x\rangle_{E^{\prime}, E} \in \mathbb{R} \tag{8.3}
\end{equation*}
$$

So, cf. (8.1),

$$
\begin{equation*}
\|\ell\|_{E^{\prime}}=\sup _{x \in B_{E}(0,1)}|\ell \cdot x|=\sup _{x \in B_{E}(0,1)}\left|\langle\ell, x\rangle_{E^{\prime}, E}\right| \tag{8.4}
\end{equation*}
$$

defines a norm in E^{\prime} s.t. $\left(E^{\prime},\|\cdot\|_{E^{\prime}}\right)$ is a Banach space.
If $T \in \mathcal{L}(E ; F)$ (linear and continuous) then its adjoint is the linear map $T^{\prime}: F^{\prime} \rightarrow E^{\prime}$ characterized by:

$$
T^{\prime}:\left\{\begin{align*}
F^{\prime} & \rightarrow E^{\prime} \tag{8.5}\\
\ell & \rightarrow T^{\prime}(\ell) \stackrel{\text { denoted }}{=} T^{\prime} \cdot \ell, \quad \text { where } \quad\left\langle T^{\prime} \cdot \ell, x\right\rangle_{E^{\prime}, E}:=\langle\ell, T \cdot x\rangle_{F^{\prime}, F}, \quad \forall x \in E .
\end{align*}\right.
$$

Proposition 8.1 T^{\prime} is continuous with

$$
\begin{equation*}
\left\|T^{\prime}\right\|=\|T\| . \tag{8.6}
\end{equation*}
$$

Thus $T^{\prime} \in \mathcal{L}\left(F^{\prime}, E^{\prime}\right)$.
Proof. $\left\|T^{\prime} \cdot \ell\right\|_{E^{\prime}}=\sup _{\|x\|_{E} \leq 1}\left|\left\langle T^{\prime} \cdot \ell, x\right\rangle_{E^{\prime}, E}\right|=\sup _{\|x\|_{E} \leq 1}\left|\langle\ell, T \cdot x\rangle_{F^{\prime}, F}\right| \leq \sup _{\|x\|_{E} \leq 1}\|\ell\|_{F^{\prime}}\|T \cdot x\|_{F}=$ $\sup _{\|x\|_{E} \leq 1}\|T\|\|x\|_{E}\|\ell\|_{F^{\prime}}=\|T\|\|\ell\|_{F^{\prime}}$, thus $\left\|T^{\prime}\right\| \leq\|\bar{T}\| ;$ And similarly $\|T . x\|_{F} \leq\left\|T^{\prime}\right\|\|\ell\|_{F^{\prime}}$, thus $\|T\| \leq\left\|T^{\prime}\right\|$.
$E^{\prime \prime}=\left(E^{\prime}\right)^{\prime}=\mathcal{L}\left(E^{\prime} ; \mathbb{R}\right)$ is a Banach space (since \mathbb{R} is complete). Let

$$
J:\left\{\begin{align*}
E & \rightarrow E^{\prime \prime}=\mathcal{L}\left(E^{\prime} ; \mathbb{R}\right) \tag{8.7}\\
x & \rightarrow J(x), \quad \text { where } \quad J(x)(\ell):=\ell \cdot x, \forall x \in E .
\end{align*}\right.
$$

J is linear (trivial), is continuous, with $\|J\|=\sup _{x \in B_{E}(0,1)}|J(x)|=\sup _{x \in B_{E}(0,1)}\left(\sup _{\ell \in B_{E^{\prime}}(0,1)}|J(x)(\ell)|\right)=$ $\sup _{x \in B_{E}(0,1)}\left(\sup _{\ell \in B_{E^{\prime}}(0,1)}|\ell . x|\right)=\sup _{x \in B_{E}(0,1)}\left(\|x\|_{E}\right)=1$, and injective (one-to-one) since $J(x)=0$ implies $\ell . x=0$ for all $\ell \in E^{\prime}$ that implies $x=0$. Thus J is a "canonical injection".

Thus $J(E)=\operatorname{Im}(E)$, the range or image of E by J, can be identified to a subspace of $E^{\prime \prime}$.
Definition 8.2 A Banach space E is reflexive iff J is bijective ($=$ one-to-one and onto), and then is identified with E, denoted $E^{\prime \prime} \simeq E$, and $J(x)$ is denoted x.
(Remark: A Hilbert space is always reflexive, and a reflexive Banach space "almost" behaves like a Hilbert space for computation purposes (with the use of the bracket $\langle., .\rangle_{E^{\prime}, E}$ similar to the use of a inner product). There are however some substantial differences: e.g. in a reflexive Banach space there exist closed subspaces without any complement, whereas in a Hilbert space any closed subspace has a complement (even an orthogonal one); And this causes some theoretical difficulties treated in the sequel.)

8.2 The open mapping theorem

Theorem 8.3 (Open mapping theorem) Let E and F be Banach spaces. If $T \in \mathcal{L}(E ; F)$ (linear and continuous) is surjective ($=$ onto, i.e. $\operatorname{Im}(T)=F$), then

$$
\begin{equation*}
\exists \gamma>0 \quad \text { s.t. } \quad T\left(B_{E}(0,1)\right) \supset B_{F}(0, \gamma) . \tag{8.8}
\end{equation*}
$$

That is, if T is linear continuous and surjective, then any open set in E is transformed by T into an open set in F. So $T\left(B_{E}(0,1)\right)$ is not "flat" (it contains an open set).

And the converse is true: if (8.8) then T is surjective.
Proof. See Brézis [6]. Steps : 1- T being onto, we have $\bigcup_{n \in \mathbb{N}^{*}} \overline{T\left(B_{E}(0, n)\right)}=F$, and Baire's Theorem gives the existence of a closed space $\overline{T\left(B_{E}(0, n)\right)}$ containing an open set; 2 - The linearity of T then implies that $\overline{T\left(B_{E}(0,1)\right)}$ contains an open set $B_{F}(0,2 \gamma)$ for some $\gamma>0$. 3- And T being continuous and E being complete we get $T\left(B_{E}(0,1)\right) \supset B_{F}(0, \gamma)$.

Converse: $T\left(B_{E}(0,1)\right) \supset B_{F}(0, \gamma)$, and T is linear, so $T(E)=F$.

Corollary 8.4 If $T \in \mathcal{L}(E ; F)$ is bijective, i.e. injective (=one-to-one) and surjective ($=$ onto), then the linear map $T^{-1}: F \rightarrow E$ is continuous, that is,

$$
\begin{equation*}
\exists \gamma>0, \quad \forall y \in F, \quad\left\|T^{-1} \cdot y\right\|_{E} \leq \frac{1}{\gamma}\|y\|_{F} \tag{8.9}
\end{equation*}
$$

Thus

$$
\begin{equation*}
\exists \gamma>0, \forall x \in E, \quad\|T . x\|_{F} \geq \gamma\|x\|_{E} . \tag{8.10}
\end{equation*}
$$

Proof. Then T bijective gives $T^{-1}\left(B_{F}(0, \gamma)\right) \subset B_{E}(0,1)$. And T^{-1} is linear since T is, thus $T^{-1}\left(B_{F}(0,1)\right) \subset$ $B_{E}\left(0, \frac{1}{\gamma}\right)$. So $y \in B_{F}(0,1)$ gives $\left\|T^{-1} . y\right\|_{E} \leq \frac{1}{\gamma}\|y\|_{F}$, i.e. (8.9). Then $y=T . x$ gives (8.10) (bijectivity).

Remark 8.5 If T is bijective between Banach spaces, then the problem: For $b \in F$ find $x \in E$ s.t. $T . x=b$ is well-posed, that is, has a unique solution $x=T^{-1} . b$ s.t. $\exists c>0$ (independent of b), $\|x\|_{E} \leq c\|b\|_{F}$ (the inverse T^{-1} is continuous). Indeed, the bijectivity of T gives a unique solution $x=T^{-1} . b$, and (8.9) gives $\|x\|_{E}=\left\|T^{-1} . b\right\|_{E} \leq \frac{1}{\gamma}\|b\|_{F}$.

Remark 8.6 A linear continuous bijective mapping between two infinite dimensional Banach spaces behaves like in finite dimension, e.g. like $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ given by its matrix $\left(\begin{array}{cc}-2 & 0 \\ 0 & 3\end{array}\right)$. Here $\|T\|=3$, $T^{-1}=\left(\begin{array}{cc}-\frac{1}{2} & 0 \\ 0 & \frac{1}{3}\end{array}\right)$, and $\left\|T^{-1}\right\|=\frac{1}{2}=\frac{1}{\gamma}$.

Remark 8.7 The bijectivity between Banach spaces (complete spaces) is required:
Let $\ell^{2}=\left\{\left(x_{n}\right)_{\mathbb{N}^{*}} \in \mathbb{R}^{\mathbb{N}^{*}}: \sum_{n \in \mathbb{N}^{*}} x_{n}^{2}<\infty\right\}$ (the space of finite energy sequences), let $E=F=\ell^{2}$, and let $T: \ell^{2} \rightarrow \ell^{2}$ be given by $T\left(\left(x_{n}\right)_{\mathbb{N}^{*}}\right)=\left(\frac{x_{n}}{n}\right)_{\mathbb{N}^{*}}$ for any $\left(x_{n}\right) \in \ell^{2}$, that is, with $\left(e_{n}\right)_{\mathbb{N}^{*}}$ the canonical basis in ℓ^{2}, T. $e_{n}=\frac{1}{n} e_{n}$ (the associated generalized matrix is the infinite diagonal matrix $\operatorname{diag}\left(1, \frac{1}{2}, \ldots, \frac{1}{n}, \ldots\right)$.) Here T is injective since $\operatorname{Ker}(T)=\{0\}$ (trivial), but not surjective since $\left(\frac{1}{n}\right)_{\mathbb{N}^{*}} \in \ell^{2}$
has no counterimage in ℓ^{2} (it would be the constant sequence $(1)_{\mathbb{N}^{*}} \notin \ell^{2}$). And its range $\operatorname{Im}(T)$ is dense in ℓ^{2} : Indeed, if $\left(y_{n}\right)_{\mathbb{N}^{*}} \in \ell^{2}$ then let $x_{n}=n y_{n}$, so that $\left(x_{n}\right)_{\mathbb{N}^{*}} \in \mathbb{R}^{\mathbb{N}^{*}}$, and for $N \in \mathbb{N}^{*}$, define the truncated sequence $\left(x_{n}^{N}\right)_{\mathbb{N}^{*}}$ by $x_{n}^{N}=x_{n}$ if $n \leq N$ and $x_{n}^{N}=0$ otherwise; then $\left(x_{n}^{N}\right) \in \ell^{2}$ (trivial) and $\left.\forall \varepsilon>0, \exists N \in \mathbb{N}^{*},\left\|y_{n}-T x_{n}^{N}\right\|_{\ell^{2}}^{2}=\sum_{n=N+1}^{\infty} y_{n}^{2}<\varepsilon\right)$. Here $\operatorname{Im}(T)$ is not closed in ℓ^{2} (since dense and closed would imply $\operatorname{Im}(T)=\ell^{2}$), and $\operatorname{Im}(T)$ is "flat" in ℓ^{2}, that is, $T\left(B_{\ell^{2}}(0,1)\right)$ does not contain any open ball: In this example it can be seen with the canonical basis $\left(e_{n}\right)_{\mathbb{N}^{*}}$ that verifies $T^{-1} . e_{n}=n e_{n}$, so that $T^{-1}\left(B_{\ell^{2}}(0,1)\right)$ is not bounded (if one prefers, $T^{-1}\left(\frac{1}{2} \gamma e_{n}\right)=n \frac{1}{2} \gamma e_{n} \notin T\left(B_{\ell^{2}}(0,1)\right)$ as soon as $n>\frac{2}{\gamma}$ although $\left.\frac{1}{2} \gamma e_{n} \in B_{\ell^{2}}(0, \gamma)\right)$.

Corollary 8.8 If $T \in \mathcal{L}(E ; F)$ (linear and continuous) is injective (=one-to-one), and if $\operatorname{Im}(T)$ is closed in F, then

$$
\begin{equation*}
\exists \gamma>0, \forall x \in E, \quad\|T \cdot x\|_{F} \geq \gamma\|x\|_{E} \tag{8.11}
\end{equation*}
$$

Proof. For $y \in \operatorname{Im}(T)$ denote $\|y\|_{\operatorname{Im}(T)}:=\|y\|_{F}$ for all $y \in \operatorname{Im}(T)$. So $\|\cdot\|_{\operatorname{Im}(T)}$ is a norm in $\operatorname{Im}(T)(\operatorname{trivial})$. Then $\operatorname{Im}(T)$ closed in F implies $(\operatorname{Im}(T),\|\cdot\| \operatorname{Im}(T))=\left(\operatorname{Im}(T),\|\cdot\| \|_{F}\right)$ is a Banach space denoted $\operatorname{Im}(T)$. Let

$$
T_{R}:\left\{\begin{align*}
E & \rightarrow \operatorname{Im}(T) \tag{8.12}\\
x & \rightarrow T_{R}(x)=T(x)
\end{align*}\right.
$$

Then T_{R} is linear continuous bijective between Banach spaces. Thus (8.10) gives $\exists \gamma>0, \forall x \in E$, $\left\|T_{R} \cdot x\right\|_{\operatorname{Im}(T)} \geq \gamma\|x\|_{E}$, i.e. (8.11).

8.3 Quotient space $E / \operatorname{Ker}(T)$, and open mapping theorem

Let E and F be banach spaces. Let $T \in \mathcal{L}(E ; F)$ (linear and continuous). Then $K=\operatorname{Ker}(T)=$ $T^{-1}(\{0\})$ (the kernel of T) is linear subspace that is closed (since T is continuous).

Consider the relation in E defined by: $x \sim y$ iff $x-y \in K$. This is an equivalence relation (easy check). Let $E / K=\{Z \subset E: \exists x \in E, Z=x+K\}=\{x+K: x \in E\}$ be the set of the equivalence classes (quotient space). An element of E / K is denoted $\dot{x}=x+K$. In particular $\dot{0}=K$.

The (usual) operators + in E / K and. on E / K are defined by, if $\dot{x}=x+K, \dot{y}=y+K$ and $\lambda \in \mathbb{R}$,

$$
\begin{equation*}
\dot{x}+\dot{y}=x+y+K, \quad \text { and } \quad \lambda \cdot \dot{x}=\lambda x+K \tag{8.13}
\end{equation*}
$$

definition independent of the $x^{\prime} \in \dot{x}$ and $y^{\prime} \in \dot{y}$ (easy check). Then $(E / K,+,$.$) is a linear space (easy$ check) with $\dot{0}$ the zero in E / K.

Lemma 8.9 The canonical map $\pi:\left\{\begin{aligned} E & \rightarrow E / K \\ x & \rightarrow \pi(x):=x+K=\dot{x}\end{aligned}\right\}$ is linear and surjective.
Proof. Linearity: $\pi(x+\lambda y)=(x+\lambda y)+K=x+K+\lambda y+\lambda K=\pi(x)+\lambda \pi(y)$ since K is a linear space (so $K=K+\lambda K$).

Surjectivity: If $\dot{x} \in E / K$ then $\exists x \in E$ s.t. $\dot{x}=x+K=\pi(x)$ (definition of $E / K)$.
For $\dot{x} \in E / K$, define $\|\cdot\|_{E / K}: E / K \rightarrow \mathbb{R}$ by

$$
\begin{equation*}
\|\dot{x}\|_{E / K}=\|\pi(x)\|_{E / K}:=\inf _{x_{0} \in K}\left\|x+x_{0}\right\|_{E} \stackrel{\text { denoted }}{=}\|x\|_{E / K} . \tag{8.14}
\end{equation*}
$$

Lemma $8.10\|.\|_{E / K}$ is a norm in E / K, and $\left(E / K,\|.\|_{E / K}\right)$ is a Banach space.
And π is continuous with $\|\pi\| \leq 1$.
Proof. $\|\dot{x}\|_{E / K}=0 \Leftrightarrow \inf _{x_{0} \in K}\left\|x+x_{0}\right\|_{E}=0 \Leftrightarrow\|x\|_{E} \leq 0$ since $0 \in K \Leftrightarrow x=0 \Leftrightarrow \pi(x)=0$ (since π is linear) $\Leftrightarrow \dot{x}=K=\dot{0}$.
$\|\lambda \dot{x}\|_{E / K}=\inf _{x_{0} \in K}\left\|\lambda x+x_{0}\right\|_{E}=\inf _{x_{0} \in K}\left\|\lambda x+\lambda x_{0}\right\|_{E}=\inf _{x_{0} \in K}|\lambda|\left\|x+x_{0}\right\|_{E}|\lambda|\|\dot{x}\|_{E / K}$.
$\|\dot{x}+\dot{y}\|_{E / K}=\inf _{x_{0}, y_{0} \in K}\left\|x+y+x_{0}+y_{0}\right\|_{E} \leq \inf _{x_{0}, y_{0} \in K}\left\|x+x_{0}\right\|_{E}+\left\|y+y_{0}\right\|_{E} \leq\|\dot{x}\|_{E / K}+\|\dot{x}+\dot{y}\|_{E / K}$.
Thus $\|.\|_{E / K}$ is a norm in E / K.
Let $\left(\dot{x}_{n}\right)_{\mathbb{N}^{*}}$ be a Cauchy sequence in E / K, that is, $\left\|\pi\left(x_{n}-x_{m}\right)\right\|_{E / K}=\left\|\dot{x}_{n}-\dot{x}_{m}\right\|_{E / K} \longrightarrow_{n, m \rightarrow \infty} 0$. Let a subsequence, still denoted $\left(d x_{n}\right)$ s.t. $\left\|\pi\left(x_{k+1}-x_{k}\right)\right\|_{E / K}<\frac{1}{2^{k}}$ for all $k \in \mathbb{N}^{*}$. Thus $\exists\left(y_{k}\right)_{\mathbb{N}^{*}} \in K$ s.t.
$\left\|x_{k+1}-x_{k}-y_{k}\right\|_{E}<\frac{2}{2^{k}}$ for all $k \in \mathbb{N}^{*}$, see (8.14). Then let $\left(z_{k}\right)_{\mathbb{N}^{*}}$ be defined by $z_{1}=0$ ad $y_{k}=z_{k+1}-z_{k}$. Thus $\left\|x_{k+1}-z_{k+1}-\left(x_{k}-y_{k}\right)\right\|_{E}<\frac{2}{2^{k}}$ for all $k \in \mathbb{N}^{*}$, thus $\left\|x_{n+1}-z_{n+1}-\left(x_{m}-y_{m}\right)\right\|_{E} \longrightarrow_{n, m \rightarrow \infty} 0$, thus $\left(\left(x_{n}-z_{n}\right)_{\mathbb{N}^{*}}\right.$ is a Cauchy sequence in E, thus converges to a limit $w \in E$. Thus $\pi\left(x_{n}-z_{n}\right)=\pi\left(x_{n}\right)-0$ converges to $\pi(w) \in E / K$, and E / K is closed.
$\|\pi(x)\|_{E / K}=\min _{x_{0} \in K}\left\|x+x_{0}\right\|_{E}$, and $0 \in K$ (linear subspace), thus $\|\pi(x)\|_{E / K} \leq\|x\|_{E}$.
Let

$$
\widetilde{T}:\left\{\begin{align*}
E / K & \rightarrow F \tag{8.15}\\
\dot{x} & \rightarrow \widetilde{T}(\dot{x}):=T(x) \quad \text { when } \quad x \in \dot{x}
\end{align*}\right.
$$

definition independent of $x \in \dot{x}$ since $T\left(x+x_{0}\right)=T(x)$ for all $x_{0} \in K(=\operatorname{Ker}(T))$. In other words, \widetilde{T} is characterized by $\widetilde{T} \circ \pi=T$.

Lemma 8.11 \widetilde{T} is linear, injective and continuous with $\|\widetilde{T}\|=\|T\|$.
Proof. With $\dot{x}=x+K$ and $\dot{y}=y+K$ we get $\dot{y}+\lambda \dot{x}=x+\lambda y+K$ since K is a linear space, thus $\widetilde{T}(\dot{x}+\lambda \dot{y})=T(x+\lambda y)=T(x)+\lambda T(y)=\widetilde{T}(\dot{x})+\lambda \widetilde{T}(\dot{y})$, and \widetilde{T} is linear.
$\widetilde{T} \cdot \dot{x}=0 \Rightarrow T\left(x+x_{0}\right)=0$ for all $x_{0} \in K \Rightarrow x+x_{0} \in K \Rightarrow x \in K \Rightarrow \dot{x}=\dot{0}$, thus \widetilde{T} is injective.
Let $\dot{x} \in E / K$. We have $\|\widetilde{T}(\dot{x})\|_{F}=\left\|T .\left(x+x_{0}\right)\right\|_{F} \leq\|T\|\left\|x+x_{0}\right\|_{E}$ for all $x_{0} \in K$, thus $\|\widetilde{T}(\dot{x})\|_{F} \leq$ $\|T\| \min _{x_{0} \in K}\left\|x+x_{0}\right\|_{E}=\|T\|\|\dot{x}\|_{E / K}$. Thus \widetilde{T} is continuous, with $\|\widetilde{T}\| \leq\|T\|$.

Let $x \in E$. We have $\|T \cdot x\|_{F}=\|\widetilde{T} \cdot \dot{x}\|_{F} \leq\|\widetilde{T}\|\|\dot{x}\|_{E / K}$, thus $\|T \cdot x\|_{F} \leq\|\widetilde{T}\|\left\|x+x_{0}\right\|_{E}$ for all $x_{0} \in K$, with $T \cdot x=T\left(x+x_{0}\right)$ for all $x_{0} \in K$, thus $\left\|T\left(x+x_{0}\right)\right\|_{F} \leq\|\widetilde{T}\|\left\|x+x_{0}\right\|_{E}$ for all $x_{0} \in K$, $\|T . x\|_{F} \leq\|\widetilde{T}\|\|x\|_{E}$. Thus $\|T\| \leq\|\widetilde{T}\|$.

Corollary 8.12 Let E and F be banach spaces. If $T \in \mathcal{L}(E ; F)$ (linear and continuous), and if $\operatorname{Im}(T)$ is closed in F, then

$$
\begin{equation*}
\exists \gamma>0, \forall x \in E, \quad\|T \cdot x\|_{F} \geq \gamma\|x\|_{E / \operatorname{Ker}(T)} \quad\left(=\gamma \inf _{x_{0} \in \operatorname{Ker}(T)}\left\|x+x_{0}\right\|_{E}\right) \tag{8.16}
\end{equation*}
$$

Proof. $K:=\operatorname{Ker}(T)=T^{-1}(\{0\})$ is closed since T is continuous.
$\operatorname{Im}(T)$ is closed in F, therefore $\left(\operatorname{Im}(T),\|\cdot\|_{F}\right)$ is a Banach space denoted $\operatorname{Im}(T)$. Then $\widetilde{T}_{R}: \dot{x} \in$ $E / K \rightarrow \widetilde{T}_{R}(\dot{x})=T(x) \in \operatorname{Im}(T)$ is linear continuous and bijective between Banach spaces. Thus (8.10) gives $\exists \gamma>0, \forall \dot{x} \in E / K,\left\|\widetilde{T}_{R} \cdot \dot{x}\right\|_{F} \geq \gamma\|\dot{x}\|_{E / K}$, i.e. (8.16).

8.4 The inf-sup condition

(8.16) is rewritten

$$
\begin{equation*}
\exists \gamma>0, \inf _{x \in E} \frac{\|T \cdot x\|_{F}}{\|x\|_{E / \operatorname{Ker}(T)}} \geq \gamma \tag{8.17}
\end{equation*}
$$

(Light writing of $\exists \gamma>0, \inf _{x \in E-\{0\}} \frac{\|T . x\|_{F}}{\|x\|_{E / \operatorname{Ker}(T)}} \geq \gamma$.)
Consider $B \in \mathcal{L}\left(E ; F^{\prime}\right)$ (linear and continuous). Then (8.17) gives

$$
\begin{equation*}
\exists \gamma>0, \inf _{x \in E} \frac{\|B \cdot x\|_{F^{\prime}}}{\|x\|_{E / \operatorname{Ker}(T)}} \geq \gamma \tag{8.18}
\end{equation*}
$$

Let $b(\cdot, \cdot): E \times F \rightarrow \mathbb{R}$ be the bilinear form defined by, for all $(x, y) \in E \times F$,

$$
\begin{equation*}
b(x, y)=\langle B . x, y\rangle_{F^{\prime}, F} \tag{8.19}
\end{equation*}
$$

Since $\|B . x\|_{F^{\prime}}=\sup _{y \in F} \frac{\left|\langle B . x, y\rangle_{F^{\prime}, F}\right|}{\|y\|_{F}}$, (8.18) gives

$$
\begin{equation*}
\exists \gamma>0, \inf _{x \in E}\left(\sup _{y \in F} \frac{b(x, y)}{\|x\|_{E / \operatorname{Ker}(T)}\|y\|_{F}}\right) \geq \gamma \tag{8.20}
\end{equation*}
$$

named the inf-sup condition satisfied by $b(\cdot, \cdot)$

9 Some spaces and their duals

9.1 Divergence, Gradient, Rotationnal

Let $\left(\vec{e}_{i}\right)$ be a Euclidean basis in \mathbb{R}^{n}, let $(\cdot, \cdot)_{\mathbb{R}^{n}}$ be the associated inner product, and let $\vec{v} \cdot \vec{w}:=(\vec{v}, \vec{w})_{\mathbb{R}^{n}}$. Let Ω be an open set in \mathbb{R}^{n}. Let $\left(\vec{e}_{i}\right)$ be a basis in \mathbb{R}^{n} and $\frac{\partial f}{\partial x^{i}}:=d f . \vec{e}_{i}$.

The divergence operator is formally given by

$$
\operatorname{div}:\left\{\begin{align*}
\mathcal{F}\left(\Omega ; \mathbb{R}^{n}\right) & \rightarrow \mathbb{R} \tag{9.1}\\
\vec{v}=\sum_{i=1}^{n} v^{i} \vec{e}_{i} & \rightarrow \operatorname{div} \vec{v}=\sum_{i=1}^{n} \frac{\partial v^{i}}{\partial x^{i}} .
\end{align*}\right.
$$

(The real value $\operatorname{div} \vec{v}$ does not depend on the choice of the basis).
The gradient operator is formally given by

$$
\overrightarrow{\operatorname{grad}}:\left\{\begin{align*}
\mathcal{F}(\Omega ; \mathbb{R}) & \rightarrow \mathbb{R}^{n} \tag{9.2}\\
f & \rightarrow \operatorname{grad} f=\sum_{i=1}^{n} \frac{\partial f}{\partial x^{i}} \vec{e}_{i} .
\end{align*}\right.
$$

The rotationnal operator is formally given by

$$
\operatorname{curl}:\left\{\begin{align*}
\mathcal{F}\left(\Omega ; \mathbb{R}^{3}\right) & \rightarrow \mathbb{R}^{3} \tag{9.3}\\
\vec{v}=\sum_{i=1}^{n} v^{i} \vec{e}_{i} & \rightarrow \operatorname{curl} \vec{v}=\left(\frac{\partial v_{3}}{\partial x_{2}}-\frac{\partial v_{2}}{\partial x_{3}}\right) \vec{e}_{1}+\left(\frac{\partial v_{1}}{\partial x_{3}}-\frac{\partial v_{3}}{\partial x_{1}}\right) \vec{e}_{2}+\left(\frac{\partial v_{2}}{\partial x_{1}}-\frac{\partial v_{1}}{\partial x_{2}}\right) \vec{e}_{3} .
\end{align*}\right.
$$

(In \mathbb{R}^{2}, curl : $\vec{v} \in \mathbb{R}^{2} \rightarrow \operatorname{curl} \vec{v}=\frac{\partial v_{2}}{\partial x_{1}}-\frac{\partial v_{1}}{\partial x_{2}} \in \mathbb{R}$.)

9.2 Some Hilbert spaces

Let Ω be an open set in $\mathbb{R}^{n}, n=1,2,3$, and $\Gamma=\partial \Omega$ be its boundary.

$$
\begin{array}{ll}
L^{2}(\Omega)=\left\{f: \Omega \rightarrow \mathbb{R}: \int_{\Omega} f^{2} d \Omega<\infty\right\}, & (f, g)_{L^{2}}=\int_{\Omega} f g d \Omega . \\
H^{1}(\Omega)=\left\{f \in L^{2}(\Omega): \operatorname{grad} f \in L^{2}(\Omega)^{n}\right\}, & (f, g)_{H^{1}}=(f, g)_{L^{2}}+(\operatorname{grad} f, \operatorname{grad} g)_{L^{2}} . \\
H^{2}(\Omega)=\left\{f \in H^{1}(\Omega): d^{2} f \in L^{2}(\Omega)^{n^{2}}\right\}, & (f, g)_{H^{2}}=(f, g)_{H^{1}}+\left(d^{2} f, d^{2} g\right)_{L^{2}} . \\
H^{\operatorname{div}}(\Omega)=\left\{\vec{v} \in L^{2}(\Omega)^{n}: \operatorname{div} \vec{v} \in L^{2}(\Omega)\right\}, & (\vec{u}, \vec{v})_{H^{\text {div }}}=(\vec{u}, \vec{v})_{L^{2}}+(\operatorname{div} \vec{u}, \operatorname{div} \vec{v})_{L^{2} .} . \\
H^{\operatorname{curl}}(\Omega)=\left\{\vec{v} \in L^{2}(\Omega)^{3}: \operatorname{curl} \vec{v} \in L^{2}(\Omega)^{3}\right\}, & (\vec{u}, \vec{v})_{H^{\text {curl }}}=(\vec{u}, \vec{v})_{L^{2}}+(\overrightarrow{\operatorname{curl}} \vec{u}, \operatorname{curl} \vec{v})_{L^{2}} .
\end{array}
$$

Integrations by parts : If $f \in H^{1}(\Omega)$ and $\vec{v} \in H^{\operatorname{div}}(\Omega)$ then

$$
\begin{equation*}
\int_{\Omega} \operatorname{grad} f \cdot \vec{v} d \Omega=-\int_{\Omega} f \operatorname{div} \vec{v} d \Omega+\int_{\Gamma} f \vec{v} \cdot \vec{n} d \Gamma \tag{9.4}
\end{equation*}
$$

If $\vec{v} \in H^{1}(\Omega)^{n}$ and $\vec{w} \in H^{\text {curl }}(\Omega)$ then

$$
\begin{equation*}
\int_{\Omega} \operatorname{curl} \vec{v} \cdot \vec{w} d \Omega=+\int_{\Omega} \vec{v} \cdot \operatorname{curl} \vec{w} d \Omega+\int_{\Gamma} \vec{v} \cdot(\vec{w} \wedge \vec{n}) d \Gamma . \tag{9.5}
\end{equation*}
$$

9.3 Some sup-spaces

Closures $\mathcal{D}(\Omega)=C_{c}^{\infty}(\Omega)$ (space of C^{∞} functions with compact support):

$$
\begin{array}{ll}
H_{0}^{1}(\Omega)=\left\{f \in H^{1}(\Omega): f_{\mid \Gamma}=0\right\}=\overline{\mathcal{D}(\Omega)} H^{1}, & (f, g)_{H_{0}^{1}}=(\operatorname{grad} f, \overrightarrow{\operatorname{rad}} g)_{L^{2}} . \\
H_{0}^{2}(\Omega)=\left\{f \in H^{2}(\Omega): f_{\mid \Gamma}=0 \text { et } \operatorname{grad} f \cdot \vec{n}_{\mid \Gamma}=0\right\}=\overline{\mathcal{D}(\Omega)} H^{H^{2}}, & (f, g)_{H_{0}^{2}}=\left(d^{2} f, d^{2} g\right)_{L^{2}} \\
H_{0}^{\operatorname{div}}(\Omega)=\left\{\vec{v} \in H^{\operatorname{div}}(\Omega):(\vec{v} \cdot \vec{n})_{\mid \Gamma}=0\right\}=\overline{\mathcal{D}(\Omega)^{n}} H^{\mathrm{div}}, & (\vec{u}, \vec{v})_{H_{0}^{\text {div }}}=(\operatorname{div} \vec{u}, \operatorname{div} \vec{v})_{L^{2}} . \\
H_{0}^{\text {curl }}(\Omega)=\left\{\vec{v} \in H^{\operatorname{curl}}(\Omega):(\vec{v} \wedge \vec{n})_{\mid \Gamma}=0\right\}={\overline{\mathcal{D}(\Omega)^{3}}}^{H^{\text {curl }}}, & (\vec{u}, \vec{v})_{H_{0}^{\text {curl }}}=\left(\overrightarrow{\operatorname{curl} \vec{u}, \operatorname{curl} \vec{v})_{L^{2}} .}\right.
\end{array}
$$

When Ω is bounded, the given semi-inner products are equivalent to the inner products of the embedding spaces.

9.4 Trace operator γ_{0} and the Hilbert space $H^{\frac{1}{2}}(\Gamma)$

The trace mapping is

$$
\gamma_{0}:\left\{\begin{align*}
H^{1}(\Omega) & \rightarrow L^{2}(\Gamma) \tag{9.6}\\
f & \rightarrow \gamma_{0}(f)=f_{\mid \Gamma}
\end{align*}\right.
$$

(Same notation ifor $\gamma_{0}: \vec{v} \in H^{1}(\Omega)^{n} \rightarrow \gamma_{0}(\vec{v})=\vec{v}_{\mid \Gamma} \in L^{2}(\Gamma)^{n}$.) If Ω is regular, then

$$
\begin{equation*}
H_{0}^{1}(\Omega)=\operatorname{Ker}\left(\gamma_{0}\right) \tag{9.7}
\end{equation*}
$$

With $\operatorname{Im}(T)$ the range of a mapping T, let

$$
\begin{equation*}
\operatorname{Im}\left(\gamma_{0}\right)=H^{\frac{1}{2}}(\Gamma), \quad \text { and } \quad\|d\|_{H^{\frac{1}{2}}(\Gamma)}=\inf _{u \in H^{1}(\Omega): u_{\mid \Gamma}=d}\|u\|_{H^{1}} \tag{9.8}
\end{equation*}
$$

Proposition 9.1 Let $d \in H^{\frac{1}{2}}(\Gamma)$ and let $u_{d} \in H^{1}(\Omega)$ be the solution of the Dirichlet problem: Find $u \in H^{1}(\Omega)$ s.t.

$$
\left\{\begin{array}{l}
-\Delta u+u=0 \quad \text { in } \Omega, \tag{9.9}\\
u_{\mid \Gamma}=d \quad \text { on } \Gamma,
\end{array}\right.
$$

then

$$
\begin{equation*}
\|d\|_{H^{\frac{1}{2}}(\Gamma)}=\left\|u_{d}\right\|_{H^{1}} \tag{9.10}
\end{equation*}
$$

and $\|\cdot\|_{H^{\frac{1}{2}}(\Gamma)}$ is the norm of the inner product

$$
\begin{equation*}
(c, d)_{H^{\frac{1}{2}}(\Gamma)}:=\left(u_{c}, u_{d}\right)_{H^{1}(\Omega)} \tag{9.11}
\end{equation*}
$$

Moreover $\left(H^{\frac{1}{2}}(\Gamma),(\cdot, \cdot)_{H^{\frac{1}{2}}(\Gamma)}\right)$ is a Hilbert space.
Moreover $\gamma_{0}: v \in\left(H^{1}(\Omega),\|\cdot\|_{H^{1}(\Omega)}\right) \rightarrow v_{\mid \gamma} \in\left(H^{\frac{1}{2}}(\Gamma),\|\cdot\|_{H^{\frac{1}{2}}(\Gamma)}\right)$ is (linear) continuous.
Proof. Let $z_{d} \in H^{1}(\Omega)$ be an counter image of $d \in H^{\frac{1}{2}}(\Gamma)$ (exists by definition of $H^{\frac{1}{2}}(\Gamma)$, cf. (9.8)). So $\gamma_{0}\left(z_{d}\right)=d=z_{d \mid \Gamma}$. Let $u=u_{0}+z_{d} \in H_{0}^{1}(\Omega)+z_{d}$. With (9.9) we get

$$
\left\{\begin{array}{l}
-\Delta u_{0}+u_{0}=\Delta z_{d}-z_{d} \quad \text { dans } H^{-1}(\Omega) \tag{9.12}\\
u_{0 \mid \Gamma}=0 \quad \text { dans } H^{\frac{1}{2}}(\Gamma) .
\end{array}\right\}
$$

Thus $u_{0} \in H_{0}^{1}(\Omega)$ satisfies

$$
\begin{equation*}
\left(u_{0}, v_{0}\right)_{H^{1}(\Omega)}=-\left(z_{d}, v_{0}\right)_{H^{1}(\Omega)}, \quad \forall v_{0} \in H_{0}^{1}(\Omega) \tag{9.13}
\end{equation*}
$$

and the Lax-Milgram theorem gives the existence of a solution $u_{0} \in H_{0}^{1}(\Omega)$. Then we check that $u_{d}=u_{0}+z_{d}$ is independent of the chosen z_{d} : If z_{d}^{\prime} satisfies $\gamma\left(z_{d}^{\prime}\right)=d$, if the associate solution is u_{0}^{\prime}, if $u_{d}^{\prime}=u_{0}^{\prime}+z_{d}^{\prime}$, then $u_{d}-u_{d}^{\prime} \in H_{0}^{1}(\Omega)$ and $\left(u_{d}-u_{d}^{\prime}, v_{0}\right)_{H^{1}(\Omega)}=0$ for any $v_{0} \in H_{0}^{1}(\Omega)$, so $u_{d}-u_{d}^{\prime}=0$ (Lax-Milgram theorem). Moreover (9.13) tells that $u_{0}+z_{d}=u_{d} \perp_{H^{1}} H_{0}^{1}(\Omega)$. Thus we get, for any $v_{0} \in H_{0}^{1}(\Omega)$,

$$
\left\|u_{d}+v_{0}\right\|_{H^{1}(\Omega)}^{2}=\left\|u_{d}\right\|_{H^{1}(\Omega)}^{2}+\left\|v_{0}\right\|_{H^{1}(\Omega)}^{2}+2\left(u_{d}, v_{0}\right)_{H^{1}(\Omega)}=\left\|u_{d}\right\|_{H^{1}(\Omega)}^{2}+\left\|v_{0}\right\|_{H^{1}(\Omega)}^{2}+0
$$

So $\inf _{\substack{w \in H^{1}(\Omega) \\ w_{\Gamma}=d}}\|w\|_{H^{1}(\Omega)}^{2}=\inf _{v_{0} \in H_{0}^{1}(\Omega)}\left\|u_{d}+v_{0}\right\|_{H^{1}(\Omega)}^{2}=\left\|u_{d}\right\|_{H^{1}(\Omega)}^{2}$, denoted $\|d\|_{H^{\frac{1}{2}}(\Gamma)}$. Then we define $(c, d)_{H^{\frac{1}{2}}(\Gamma)}$ as in (9.11), and $(\cdot, \cdot)_{H^{\frac{1}{2}}}$ is trivially bilinear symmetric positive (is an inner product).

Then we check that $\left(H^{\frac{1}{2}}(\Gamma),\|\cdot\|_{H^{\frac{1}{2}}}\right)$ is complete: If $\left(d_{n}\right)_{\mathbb{N}^{*}} \in H^{\frac{1}{2}}(\Gamma)$ is a Cauchy sequel in $H^{\frac{1}{2}}(\Gamma)$ and if $u_{d_{n}}$ is the solution of (9.9), then $\left(u_{d_{n}}\right)_{\mathbb{N}^{*}}$ is a Cauchy sequel in $\left(H^{1}(\Omega),\|\cdot\|_{H^{1}}\right)$, cf. (9.10), so converges in $H^{1}(\Omega)$ (since $H^{1}(\Omega)$ is complete) toward some $u \in H^{1}(\Omega)$. Then let $d:=\gamma_{0}(u) \in H^{\frac{1}{2}}(\Gamma)$. Since $\left(u_{d_{n}}, v_{0}\right)_{H^{1}(\Omega)}=0$ for any $v_{0} \in H_{0}^{1}(\Omega)$, cf. (9.9), we get $\left(u_{d}, v_{0}\right)_{H^{1}(\Omega)}=0$ for any $v_{0} \in H_{0}^{1}(\Omega)$ (continuity of an inner product relatively to itself). Thus u_{d} is the solution of (9.9), and $\left\|d-d_{n}\right\|_{H^{\frac{1}{2}}}=$ $\left\|u-u_{d_{n}}\right\|_{H^{1}} \longrightarrow_{n \rightarrow \infty} 0$.

And $\gamma_{0}:\left(H^{1}(\Omega),\|\cdot\|_{H^{1}}\right) \rightarrow\left(H^{\frac{1}{2}}(\Gamma),\|\cdot\|_{H^{\frac{1}{2}}(\Gamma)}\right.$ (linear) satisfies, for $u \in H^{1}(\Omega)$, with $d:=\gamma_{0}(u)$ and u_{d} solution of (9.9), $\left\|\gamma_{0}(u)\right\|_{H^{\frac{1}{2}}(\Gamma)}=\left\|u_{d}\right\|_{H^{1}(\Omega)} \leq\left\|u_{d}+u_{0}\right\|_{H^{1}(\Omega)}$ for any $u_{0} \in H_{0}^{1}(\Omega)$, thus with $u_{0}=u-u_{d}$ we get $\left\|\gamma_{0}(u)\right\|_{H^{\frac{1}{2}}(\Gamma)}=\|u\|_{H^{1}(\Omega)}$, so γ_{0} is bounded $\left(\left\|\gamma_{0}\right\| \leq 1\right)$.

9.5 Some other trace operators

$$
\begin{align*}
& \gamma_{1}:\left\{\begin{aligned}
H^{2}(\Omega) & \rightarrow L^{2}(\Gamma), \\
f & \rightarrow \gamma_{1}(f)=(\overrightarrow{g r a d} f)_{\mid \Gamma} \cdot \vec{n} \stackrel{\text { denoted }}{=} \frac{\partial f}{\partial \vec{n} \mid \Gamma}
\end{aligned}\right. \tag{9.14}\\
& \gamma_{n}:\left\{\begin{aligned}
H^{\text {div }}(\Omega) & \rightarrow H^{-\frac{1}{2}}(\Gamma), \\
\vec{v} & \rightarrow \gamma_{n}(\vec{v})=\gamma_{0}(\vec{v}) \cdot \vec{n} \stackrel{\text { denoted }}{=}(\vec{v} \cdot \vec{n})_{\mid \Gamma}
\end{aligned}\right. \tag{9.15}
\end{align*}
$$

(and the divergence operator enables the control of $\vec{v} \cdot \vec{n}$ on Γ),

$$
\vec{\gamma}_{t}:\left\{\begin{align*}
H^{\mathrm{curl}}(\Omega) & \rightarrow H^{-\frac{1}{2}}(\Gamma)^{3}, \tag{9.16}\\
\vec{v} & \rightarrow \vec{\gamma}_{t}(\vec{v})=\gamma_{0}(\vec{v}) \wedge \vec{n}^{\text {denoted }}(\vec{v} \wedge \vec{n})_{\mid \Gamma}
\end{align*}\right.
$$

(and the rotational operator enables the control $\vec{v} \wedge \vec{n}$ on Γ.

9.6 Some Dual spaces

Banach spaces:

$$
\begin{array}{ll}
\left(L^{2}(\Omega)\right)^{\prime} \simeq L^{2}(\Omega) \quad \text { (usual identification) } & \|f\|_{L^{2}(\Omega)^{\prime}}=\|f\|_{L^{2}(\Omega)} . \\
L_{0}^{2}(\Omega)=\left\{f \in L^{2}(\Omega): \int_{\Omega} f d \Omega=0\right\} \simeq L^{2}(\Omega) / \mathbb{R}, & \|f\|_{L_{0}^{2}}=\inf _{c \in \mathbb{R}}\|f+c\|_{L^{2}} . \\
H^{-1}(\Omega)=H_{0}^{1}(\Omega)^{\prime}, & \|f\|_{H^{-1}}=\sup _{v \in H_{0}^{1}(\Omega)} \frac{\langle f, v\rangle}{\|v\|_{H_{0}^{1}}} . \tag{9.17}\\
H^{-\frac{1}{2}}(\Gamma)=\left(H^{\frac{1}{2}}(\Gamma)\right)^{\prime}, & \|\mu\|_{H^{-\frac{1}{2}(\Gamma)}}=\sup _{\lambda \in H^{\frac{1}{2}}(\Gamma)} \frac{|\langle\mu, \lambda\rangle|}{\|\lambda\|_{H^{\frac{1}{2}}(\Gamma)} .} .
\end{array}
$$

We have identified $\left(L^{2}(\Omega)\right)^{\prime}$ with $L^{2}(\Omega)$ thanks to the Riesz representation theorem in $\left(L^{2}(\Omega),(\cdot, \cdot)_{L^{2}}\right)$, that is,

$$
\begin{equation*}
\forall \ell \in L^{2}(\Omega)^{\prime}, \exists!f \in L^{2}(\Omega), \forall g \in L^{2}(\Omega),\langle\ell, g\rangle_{L^{2^{\prime}}, L^{2}}=(f, g)_{L^{2}(\Omega)}, \quad \text { and } \quad\|f\|_{L^{2}(\Omega)}=\|\ell\|_{L^{2}(\Omega)^{\prime}} \tag{9.18}
\end{equation*}
$$

Thus $H_{0}^{1}(\Omega) \subset H^{1}(\Omega) \subset L^{2}(\Omega) \simeq L^{2}(\Omega)^{\prime} \subset\left(H^{1}(\Omega)\right)^{\prime} \subset H^{-1}(\Omega)$. And $L^{2}(\Omega)$ is named the "pivot space" (a central space in distribution theory of Schwartz [29]).

Proposition 9.2 Let $\lambda \in H^{-\frac{1}{2}}(\Gamma)$ and let $w_{\lambda} \in H^{1}(\Omega)$ be the solution of the Nenmann problem: Find $w \in H^{1}(\Omega)$ s.t.

$$
\left\{\begin{array}{l}
-\Delta w+w=0 \quad \text { dans } \Omega \tag{9.19}\\
\frac{\partial w}{\partial n}=\lambda \quad \text { sur } \Gamma
\end{array}\right.
$$

then

$$
\begin{equation*}
\|\lambda\|_{H^{-\frac{1}{2}}(\Gamma)}=\left\|w_{\lambda}\right\|_{H^{1}(\Omega)} \tag{9.20}
\end{equation*}
$$

Proof. (9.19) reads $(w, v)_{H^{1}(\Omega)}=\langle\lambda, v\rangle_{H^{-\frac{1}{2}}(\Gamma), H^{\frac{1}{2}}(\Gamma)}$ for all $v \in H^{1}(\Omega)$, thus (9.19) has a unique solution w_{λ} (Lax-Milgram theorem: The bilinear form given by $a(u, v)=(u, v)_{H^{1}(\Omega)}$ is trivially $H^{1}(\Omega)$ continuous and coercive, and the linear form given by $\ell(v)=\langle\lambda, v\rangle_{H^{-\frac{1}{2}}(\Gamma), H^{\frac{1}{2}}(\Gamma)}$ is continuous since
$|\ell(v)| \leq\|\lambda\|_{H^{-\frac{1}{2}(\Gamma)}}\left\|\gamma_{0}(v)\right\|_{H^{\frac{1}{2}}(\Gamma)} \leq\|\lambda\|_{H^{-\frac{1}{2}(\Gamma)}}\|v\|_{H^{1}(\Omega)}$, cf. prop. 9.11). And :

$$
\begin{align*}
\|\lambda\|_{H^{-\frac{1}{2}}(\Gamma)} & =\sup _{d \in H^{\frac{1}{2}}(\Gamma)} \frac{\left|\langle\lambda, d\rangle_{H^{-\frac{1}{2}}(\Gamma), H^{\frac{1}{2}}(\Gamma)}\right|}{\|d\|_{H^{\frac{1}{2}}(\Gamma)}} \text { (definition) } \\
& \left.=\sup _{d \in H^{\frac{1}{2}}(\Gamma)} \frac{\left|\left\langle\lambda, u_{d}\right\rangle_{H^{-\frac{1}{2}}(\Gamma), H^{\frac{1}{2}}(\Gamma)}\right|}{\left\|u_{d}\right\|_{H^{1}(\Omega)}} \quad \text { (cf. (9.11) }\right) \tag{9.21}\\
& \left.=\sup _{d \in H^{\frac{1}{2}}(\Gamma)} \frac{\left|\left(w_{\lambda}, u_{d}\right)_{H^{1}(\Omega)}\right|}{\left\|u_{d}\right\|_{H^{1}(\Omega)}} \quad \text { (cf. (9.19) }\right) \\
& \leq\left\|w_{\lambda}\right\|_{H^{1}(\Omega)}, \quad\left(\text { Cauchy-Schwarz in } H^{1}(\Omega)\right) .
\end{align*}
$$

Et $\gamma_{0}\left(w_{\lambda}\right) \in H^{\frac{1}{2}}(\Gamma)$ gives

$$
\begin{align*}
\|\lambda\|_{H^{-\frac{1}{2}}(\Gamma)} & \geq \frac{\left\lvert\,\left\langle\lambda, \gamma_{0}\left(w_{\lambda}\right)\right\rangle_{H^{-\frac{1}{2}}(\Gamma), H^{\frac{1}{2}}(\Gamma)}\right.}{\left\|\gamma_{0}\left(w_{\lambda}\right)\right\|_{H^{\frac{1}{2}}(\Gamma)} \quad \text { (by definition of the sup) }} \\
& \geq \frac{\left|\left(w_{\lambda}, w_{\lambda}\right\rangle_{H^{1}(\Omega)}\right|}{\left.\left\|\gamma_{0}\left(w_{\lambda}\right)\right\|_{H^{\frac{1}{2}}(\Gamma)} \quad \text { (cf. (9.19) }\right)} \tag{9.22}\\
& \geq\left\|w_{\lambda}\right\|_{H^{1}(\Omega)} \quad \text { (since }\left\|\gamma_{0}\left(w_{\lambda}\right)\right\|_{H^{\frac{1}{2}}(\Gamma)} \leq\left\|w_{\lambda}\right\|_{H^{1}(\Omega)} \text { cf. (99.8)). }
\end{align*}
$$

Thus (9.20).

9.7 Dual of $H^{1}(\Omega)$ and $H^{\operatorname{div}}(\Omega)$ (characterizations)

Theorem 9.3 Dual of $H^{1}(\Omega)$.

$$
\begin{equation*}
\ell \in\left(H^{1}(\Omega)\right)^{\prime} \quad \Rightarrow \quad \exists(f, \vec{u}) \in L^{2}(\Omega) \times L^{2}(\Omega)^{n}:\langle\ell, \psi\rangle=(f, \psi)_{L^{2}}+(\vec{u}, \overrightarrow{\operatorname{grad}} \psi)_{L^{2}} \quad \forall \psi \in H^{1}(\Omega) . \tag{9.23}
\end{equation*}
$$

Dual of $H_{0}^{1}(\Omega)$.

$$
\begin{equation*}
\ell \in H^{-1}(\Omega) \Rightarrow \exists(f, \vec{u}) \in L^{2}(\Omega) \times L^{2}(\Omega)^{n} \quad \text { t.q. } \quad \ell=f-\operatorname{div} \vec{u} . \tag{9.24}
\end{equation*}
$$

And if Ω is bounded then we can choose $f=0\left(\right.$ with $\left.\left(H_{0}^{1}(\Omega),(\cdot, \cdot)_{H_{0}^{1}}\right)\right)$.
Proof. (from Brézis [6.) Characterization of $H^{1}(\Omega)^{n}$. Define $Z:=L^{2}(\Omega) \times L^{2}(\Omega)^{n}$ provided with the inner product $((\phi, \vec{u}),(\psi, \vec{v}))_{Z}=(\phi, \psi)_{L^{2}}+(\vec{u}, \vec{v})_{L^{2}}$ so that Z is a Hilbert space. Define T : $\left\{\begin{aligned} H^{1}(\Omega) & \rightarrow Z \\ \psi & \rightarrow T \psi=(\psi, \overrightarrow{\operatorname{grad}} \psi)\end{aligned}\right\}$. So $\|\psi\|_{H^{1}}=\|T \psi\|_{Z}=\|\left(\psi, \overrightarrow{\operatorname{grad} \psi)} \|_{Z}\right.$, and $T:\left(H_{0}^{1}(\Omega),(\cdot, \cdot)_{H_{0}^{1}}\right) \rightarrow$ $\left(\operatorname{Im}(T),\|\cdot\|_{Z}\right)$ is an isometry. Let $\ell \in H^{1}(\Omega)^{\prime}$. Define

$$
\Phi_{\operatorname{Im}(T)}:\left\{\begin{aligned}
\operatorname{Im}(T) & \rightarrow \mathbb{R} \\
(\psi, \vec{v}=\operatorname{grad} \psi) & \rightarrow\left\langle\Phi_{\operatorname{Im}(T)},(\psi, \vec{v})\right\rangle_{Z^{\prime}, Z}=\left\langle\ell, T^{-1}(\psi, \vec{v})\right\rangle_{H^{1^{\prime}}, H^{1}}=\langle\ell, \psi\rangle_{H^{1}, H^{1}} .
\end{aligned}\right.
$$

$\Phi_{\operatorname{Im}(T)}$ is linear (trivial) and continuous since ℓ and T^{-1} are. With Hahn-Banach theorem, extend $\Phi_{\operatorname{Im}(T)}$ to Z, so that we get a linear countinous form $\Phi_{Z}:\left\{\begin{aligned} Z & \rightarrow \mathbb{R} \\ (\psi, \vec{v}) & \rightarrow\left\langle\Phi_{Z},(\psi, \vec{v})\right\rangle\end{aligned}\right\}$. Then the Riesz representation theorem gives: $\exists(\phi, \vec{u}) \in Z$ s.t. $\left\langle\Phi_{Z},(\psi, \vec{v})\right\rangle=\left((\phi, \vec{u}),(\psi, \vec{v})_{Z}=\int_{\Omega} \phi \psi d \Omega+\int_{\Omega} \vec{u} . \vec{v} d \Omega\right.$ for all $(\psi, \vec{v}) \in Z$. Then take $(\psi, \vec{v}=\operatorname{grad} \psi) \in \operatorname{Im}(T)$ to get (9.23).

Similar proof for (9.24).
Theorem 9.4 Dual de $H^{\text {div }}(\Omega)$.

$$
\begin{equation*}
F \in\left(H^{\operatorname{div}}(\Omega)\right)^{\prime} \quad \Rightarrow \quad \exists(\vec{f}, \phi) \in L^{2}(\Omega)^{n} \times L^{2}(\Omega) \text { s.t. }\langle F, \vec{v}\rangle=(\vec{f}, \vec{v})_{L^{2}}+(\phi, \operatorname{div} \vec{v})_{L^{2}}, \quad \forall \vec{v} \in H^{\operatorname{div}}(\Omega) . \tag{9.25}
\end{equation*}
$$

Dual de $H_{0}^{\text {div }}(\Omega)$. In particular

$$
\begin{equation*}
F \in H_{0}^{\operatorname{div}}(\Omega)^{\prime} \quad \Rightarrow \quad \exists(\vec{f}, \phi) \in L^{2}(\Omega)^{n} \times L^{2}(\Omega) \text { s.t. } F=\vec{f}-\overrightarrow{\operatorname{grad}} \phi . \tag{9.26}
\end{equation*}
$$

And if Ω is bounded we can choose $\vec{f}=0$ (with $\left(H_{0}^{\operatorname{div}}(\Omega),(\cdot, \cdot)_{H_{0}^{\text {div }}}\right)$).
Proof. (Similar to the proof of (9.23).) Define $Z=L^{2}(\Omega)^{n} \times L^{2}(\Omega)$ provided with the inner product $((\vec{u}, p),(\vec{v}, q))_{Z}=(\vec{u}, \vec{v})_{L^{2}}+(p, q)_{L^{2}}$ so that $\left(Z,(\cdot, \cdot)_{Z}\right)$ is a Hilbert space. Define $T:\left\{\begin{aligned} H^{\mathrm{div}}(\Omega) & \rightarrow Z \\ \vec{v} & \rightarrow T \vec{v}=(\vec{v}, \operatorname{div} \vec{v})\end{aligned}\right\}$.
So $\|\vec{v}\|_{H^{\text {div }}}=\|T \vec{v}\|_{Z}=\|(\vec{v}, \operatorname{div} \vec{v})\|_{Z}$, and $T:\left(H^{\text {div }}(\Omega),\|\cdot\|_{H^{\text {div }}}\right) \rightarrow\left(\operatorname{Im}(T),\|\cdot\| \|_{Z}\right)$ is an isometry. Let $F \in H^{\operatorname{div}}(\Omega)^{\prime}$. The mapping $(\vec{v}, q=\operatorname{div} \vec{v}) \in \operatorname{Im}(T) \rightarrow\left\langle F, T^{-1}(\vec{v}, q)\right\rangle_{H^{\text {div }}, H^{\text {div }}}=\langle F, \vec{v}\rangle_{H^{\text {div }}, H^{\text {div }}}$ is a linear form (trivial) that is continuous since F and T^{-1} are. With Hahn-Banach theorem, extend it to Z to get a linear continuous form named $\Phi:(\vec{v}, q) \in Z \rightarrow\langle\Phi,(\vec{v}, q)\rangle$. Then the Riesz representation theorem gives: $\exists(\vec{u}, p) \in Z$ s.t. $\langle\Phi,(\vec{v}, q)\rangle=((\vec{u}, p),(\vec{v}, q))_{Z}=\int_{\Omega} \vec{u} . \vec{v} d \Omega+\int_{\Omega} p q d \Omega$ for all $(\vec{v}, q) \in Z$. An choose $(\vec{v}, q=\operatorname{div} \vec{v}) \in \operatorname{Im}(T)$ to get (9.25).

Similar proof for (9.26).

9.8 Kernel of the trace operators

Ω is supposed to be a regular open set.

$$
\begin{array}{ll}
\operatorname{Ker}\left(\gamma_{0}\right)=H_{0}^{1}(\Omega), & \operatorname{Im}\left(\gamma_{0}\right)=H^{\frac{1}{2}}(\Gamma) \text { dense in } L^{2}(\Gamma) . \\
\operatorname{Ker}\left(\gamma_{1}\right) \cap \operatorname{Ker}\left(\gamma_{0}\right)=H_{0}^{2}(\Omega), & \operatorname{Im}\left(\gamma_{1}\right)=H^{\frac{1}{2}}(\Gamma) \\
\operatorname{Ker}\left(\gamma_{n}\right)=H_{0}^{\operatorname{div}}(\Omega), & \operatorname{Im}\left(\gamma_{n}\right)=H^{-\frac{1}{2}}(\Gamma) \tag{9.27}\\
\operatorname{Ker}\left(\vec{\gamma}_{t}\right)=H_{0}^{\operatorname{curl}}(\Omega), & \operatorname{Im}\left(\vec{\gamma}_{t}\right)=H^{-\frac{1}{2}}(\Gamma)^{3}
\end{array}
$$

9.9 Poincaré-Friedrichs

(See e.g. manuscript "Eléments finis", or Raviart-Thomas [28], or Ciarlet [12]...
If Ω is bounded (at least in one direction), then we have Poincaré's inequality in $H_{0}^{1}(\Omega)$: There exists $c_{\Omega}>0$ s.t

$$
\begin{equation*}
\forall v \in H_{0}^{1}(\Omega), \quad\|v\|_{L^{2}} \leq c_{\Omega}\|\overrightarrow{\operatorname{grad} v}\|_{L^{2}} \tag{9.28}
\end{equation*}
$$

and the norms $\|v\|_{H^{1}(\Omega)}$ and $\|\overrightarrow{\operatorname{grad} v}\|_{L^{2}(\Omega)}$ are equivalent in $H_{0}^{1}(\Omega)$ (this space is closed in $H^{1}(\Omega)$ it is the closure of $\mathcal{D}(\Omega)$ in $\left.H^{1}(\Omega)\right)$.

And if Ω is bounded then there exists $c_{\Omega}>0$ s.t:

$$
\begin{equation*}
\forall v \in H_{0}^{1}(\Omega) \bigcap H^{2}(\Omega), \quad\|v\|_{H^{2}(\Omega)} \leq c_{\Omega}\|\Delta v\|_{L^{2}(\Omega)} \tag{9.29}
\end{equation*}
$$

and the norms $\|v\|_{H^{2}(\Omega)}$ and $\|\Delta v\|_{L^{2}(\Omega)}$ are equivalent in $H_{0}^{1}(\Omega) \bigcap H^{2}(\Omega)$ (this space is not closed in $\left.H^{1}(\Omega)\right)$.

9.10 $L^{2}(\Omega)^{n}$ Decomposition (Helmholtz)

Let $\Omega \subset \mathbb{R}^{n}$ an open regular bounded set. Let div : $H^{\operatorname{div}}(\Omega) \rightarrow L^{2}(\Omega)$, so $\operatorname{Ker}(\operatorname{div})=\left\{\vec{v} \in H^{\operatorname{div}}(\Omega)\right.$: $\operatorname{div} \vec{v}=0\}$. And let

$$
\begin{equation*}
\operatorname{Ker}(\operatorname{div})_{0}=\operatorname{Ker}(\operatorname{div}) \cap H_{0}^{\text {div }}(\Omega)=\left\{\vec{v} \in \operatorname{Ker}(\operatorname{div}):(\vec{v} \cdot \vec{n})_{\mid \Gamma}=0\right\} \tag{9.30}
\end{equation*}
$$

the subspace of incompressible functions with Γ impervious.
Theorem 9.5

$$
\left\{\begin{array}{l}
L^{2}(\Omega)^{n}=\overrightarrow{\operatorname{grad}}\left(H_{0}^{1}(\Omega)\right) \oplus^{\perp_{L^{2}}} \operatorname{Ker}(\text { div }) \tag{9.31}\\
\left.L^{2}(\Omega)^{n}=\overrightarrow{\operatorname{grad}(} H^{1}(\Omega)\right) \oplus^{\perp_{L^{2}}} \operatorname{Ker}(\text { div })_{0}
\end{array}\right.
$$

i.e, for any $\vec{f} \in L^{2}(\Omega)^{n}$ there exists $(\phi, \vec{w}) \in \operatorname{grad}\left(H_{0}^{1}(\Omega)\right) \times \operatorname{Ker}(\operatorname{div})$ for (9.31) ${ }_{1}$, and there exists $(\phi, \vec{w}) \in \operatorname{grad}\left(H^{1}(\Omega)\right) \times \operatorname{Ker}(\operatorname{div})_{0}$ for $(9.31)_{2}$, s.t.

$$
\begin{equation*}
\vec{f}=\operatorname{grad} \phi+\vec{w}, \quad \text { with } \quad(\operatorname{grad} \phi, \vec{w})_{L^{2}}=0 \tag{9.32}
\end{equation*}
$$

Proof. Let $\vec{f} \in L^{2}(\Omega)^{n}$.
For (9.31) ${ }_{1}$, consider the solution of the homogenous Dirichlet problem: Find $\phi \in H_{0}^{1}(\Omega)$ s.t. $\Delta \phi=$ $\operatorname{div} \vec{f}$ (distribution), meaning, find $\phi \in H_{0}^{1}(\Omega)$ s.t. $(\operatorname{grad} \phi, \overrightarrow{\operatorname{rad}} \psi)_{L^{2}}=(\vec{f}, \operatorname{grad} \psi)_{L^{2}}$ for all $\psi \in H_{0}^{1}(\Omega)$. The Lax-Milgram theorem gives a unique solution $\phi \in H_{0}^{1}(\Omega)$.

Let $\vec{w}=\vec{f}-\operatorname{grad} \phi \in L^{2}(\Omega)^{n}$. So $(\vec{w}, \operatorname{grad} \psi)_{L^{2}}=0$ for all $\psi \in H_{0}^{1}(\Omega)$, by definition of ϕ, thus $\vec{w} \perp_{L^{2}} \operatorname{grad}\left(H_{0}^{1}(\Omega)\right)$ and $\operatorname{div} \vec{w}=0 \in H^{-1}(\Omega)$, and $0 \in L^{2}(\Omega)$, thus $\vec{w} \in H^{\operatorname{div}}(\Omega)$ and $\vec{w} \in \operatorname{Ker}(\operatorname{div})$; Thus $\vec{f}=\vec{w}+\operatorname{grad} \phi \in \operatorname{Ker}(\operatorname{div}) \oplus^{\perp^{2}} \operatorname{grad}\left(H_{0}^{1}(\Omega)\right)$, thus (9.31) 1 .

For (9.31) $)_{2}$, consider the solution of the homogenous Neumann problem: Find $\phi \in H^{1}(\Omega)$ s.t. $\int_{\Omega} \overrightarrow{\operatorname{grad}} \phi \cdot \overrightarrow{\operatorname{grad}} \psi d \Omega=\int_{\Omega} \vec{f} . \operatorname{grad} \psi d \Omega$ for all $\psi \in H^{1}(\Omega)$. The Lax-Milgram theorem gives a unique solution $\phi \in H^{1}(\Omega) / \mathbb{R}$ (i.e. up to a constant), moreover with $\phi \in H^{2}(\Omega)$ (regularity result thanks to $\vec{f} \in L^{2}(\Omega)$), so that $-\langle\Delta \phi, \psi\rangle_{\left(H^{1}(\Omega)\right)^{\prime}, H^{1}(\Omega)}+\int_{\Gamma} \operatorname{grad} \phi(x) \cdot \vec{n}(x) \psi(x) d \Gamma=-\langle\operatorname{div} \vec{f}, \psi\rangle_{\left(H^{1}(\Omega)\right)^{\prime}, H_{\vec{\prime}}^{1}(\Omega)}$ for all $\psi \in H^{1}(\Omega)$. In particular $\psi \in H_{0}^{1}(\Omega)$ gives $\Delta \phi=\operatorname{div} \vec{f} \in\left(H^{1}(\Omega)\right)^{\prime}$, and we are left with $\int_{\Gamma} \overrightarrow{\operatorname{grad}} \phi(x) \cdot \vec{n}(x) \psi(x) d \Gamma$ for all $\psi \in H^{1}(\Omega)$, thus for all $\psi_{\mid \Gamma} \in H^{\frac{1}{2}}(\Gamma)$, thus $\operatorname{grad} \phi \cdot \vec{n}_{\mid \Gamma}=0$.

Let $\vec{w}=\vec{f}-\operatorname{grad} \phi \in L^{2}(\Omega)^{n}$. Thus $(\vec{w}, \operatorname{grad} \psi)_{L^{2}}=0$ for all $\psi \in H^{1}(\Omega)$, by definition of ϕ, thus $\vec{w} \perp \operatorname{grad}\left(H^{1}(\Omega)\right)$. And $\operatorname{div} \vec{w}=\operatorname{div} \vec{f}-\Delta \phi=0$, thus $\operatorname{div} \vec{w} \in L^{2}(\Omega)$ and $\vec{w} \in \operatorname{Ker}(\operatorname{div})$. With $\int_{\Omega} \vec{w} \cdot \operatorname{grad} \psi d \Omega=0$ for all $\psi \in H^{1}(\Omega)$, thus $\int_{\Omega} \vec{w} \cdot \vec{n} \psi d \Gamma=0$ for all $\psi \in H^{1}(\Omega)$, and $\vec{w} \cdot \vec{n}=0 \in H^{-\frac{1}{2}}(\Gamma)$ (since $H^{\frac{1}{2}}(\Gamma)$ is dense in $L^{2}(\Gamma)$), thus $\vec{w} \in \operatorname{Ker}(\text { div })_{0}$, thus $\vec{f}=\overrightarrow{\operatorname{grad} \phi}+\vec{w} \in \overrightarrow{\operatorname{grad}}\left(H^{1}(\Omega)\right) \oplus^{\perp_{L^{2}}} \operatorname{Ker}(\operatorname{div})_{0}$, thus (9.31) 2 .

10 A surjectivity of the gradient operator

See e.g. Girault-Raviart [18]. We deal here with infinite dimensional spaces. The surjectivity of grad is need for a Stokes like problem, see (1.2).

10.1 The theorem

Let Ω be an open regular set in \mathbb{R}^{n}. Let $\left(\vec{e}_{i}\right)$ be a given Cartesian \mathbb{R}^{n}, and $\vec{n}(x)=\sum_{i=1}^{n} n_{i}(x) \vec{e}_{i}$ be the outer normal unit to Γ at x.
$H^{-1}(\Omega)=\left(H_{0}^{1}(\Omega)\right)^{\prime}=\mathcal{L}\left(H_{0}^{1}(\Omega) ; \mathbb{R}\right)$ is the set of continuous linear forms defined on $H_{0}^{1}(\Omega)$, cf. (9.17).
With (9.18), $L^{2}(\Omega)^{\prime}$ is identified to $L^{2}(\Omega)$, and $H^{-1}(\Omega) \supset L^{2}(\Omega)^{\prime}=L^{2}(\Omega) \supset H_{0}^{1}(\Omega)$.
And if $g \in L^{2}(\Omega)$, then $\frac{\partial g}{\partial x_{i}} \in H^{-1}(\Omega)$, and, for all $\phi \in H_{0}^{1}(\Omega)$,

$$
\begin{equation*}
\left\langle\frac{\partial g}{\partial x_{i}}, \phi\right\rangle_{H^{-1}, H_{0}^{1}}:=-\int_{\Omega} g(x) \frac{\partial \phi}{\partial x_{i}}(x) d x \tag{10.1}
\end{equation*}
$$

see Schwartz [29]. In particular, if $p \in L^{2}(\Omega)^{n}$ then $\operatorname{grad} p \in H^{-1}(\Omega)^{n}$ and, for all $\vec{v} \in H_{0}^{1}(\Omega)^{n}$,

$$
\begin{equation*}
\langle\operatorname{grad} p, \vec{v}\rangle_{H^{-1}, H_{0}^{1}}=-\int_{\Omega} p(x) \operatorname{div} \vec{v}(x) d x=-(p, \operatorname{div} \vec{v})_{L^{2}} \tag{10.2}
\end{equation*}
$$

Theorem 10.1 The range of the gradient operator grad : $\left\{\begin{aligned} L^{2}(\Omega) & \rightarrow H^{-1}(\Omega) \\ p & \rightarrow \overrightarrow{\operatorname{grad} p}\end{aligned}\right\}$ is closed, and its kernel $\operatorname{Ker}(\mathrm{grad})$ is the set of constant functions.

Proof. The proof of this quite difficult theorem is given in the next \S.
And the open mapping theorem, cf. (8.10), then gives the needed result for the Stokes like problem, cf. (1.2):

Corollary 10.2

$$
\begin{equation*}
\exists \beta>0, \forall p \in L^{2}(\Omega), \quad\|\operatorname{arad} p\|_{H^{-1}} \geq \beta\|p\|_{L^{2}(\Omega) / \mathbb{R}} \tag{10.3}
\end{equation*}
$$

that is $\exists \beta>0, \inf _{p \in L^{2}(\Omega)} \sup _{v \in H_{0}^{1}(\Omega)} \frac{\left|(\operatorname{div} \vec{v}, p)_{L^{2}}\right|}{\|\vec{v}\|_{H_{0}^{1}(\Omega) / \operatorname{Ker}(\operatorname{div})} \mid p \|_{L_{0}^{2}(\Omega)}} \geq \beta$ (inf-sup condition).

10.2 Steps for the proof

10.2.1 Equivalent norms in $H^{-1}(\Omega)$

Ω being bounded, the Poincaré inequality gives:

$$
\begin{equation*}
\exists c_{\Omega} \in \mathbb{R}, \forall q \in H_{0}^{1}(\Omega),\|q\|_{L^{2}} \leq c_{\Omega}\|q\|_{H_{0}^{1}} \tag{10.4}
\end{equation*}
$$

Let $q \in L^{2}(\Omega)$, and let $\ell_{q} \in H^{-1}(\Omega)$ be defined on $H_{0}^{1}(\Omega)$ by

$$
\begin{equation*}
\forall \psi \in H_{0}^{1}(\Omega), \quad\left\langle\ell_{q}, \psi\right\rangle_{H^{-1}, H_{0}^{1}}:=(q, \psi)_{L^{2}(\Omega)} \tag{10.5}
\end{equation*}
$$

Thus ℓ_{q} is trivially linear, and, with (10.4),

$$
\begin{equation*}
\forall \psi \in H_{0}^{1}(\Omega), \quad\left|\left\langle\ell_{q}, \psi\right\rangle_{H^{-1}, H_{0}^{1}}\right|=\left|(q, \psi)_{L^{2}(\Omega)}\right| \leq\|q\|_{L^{2}}\|\psi\|_{L^{2}} \leq c_{\Omega}\|q\|_{L^{2}}\|\psi\|_{H_{0}^{1}} \tag{10.6}
\end{equation*}
$$

Thus ℓ_{q} is continuous, thus $\ell_{q} \in H^{-1}(\Omega), L^{2}(\Omega)$ is considered to be a subspace in $H^{-1}(\Omega)$.
Proposition 10.3 If $q \in L^{2}(\Omega)$, then

$$
\begin{equation*}
\left\|\ell_{q}\right\|_{H^{-1}} \leq c_{\Omega}\|q\|_{L^{2}}, \quad\|\overrightarrow{\operatorname{rad}} q\|_{H^{-1}} \leq\|q\|_{L^{2}} \tag{10.7}
\end{equation*}
$$

Thus the injection $\left\{\begin{aligned} L^{2}(\Omega) & \rightarrow H^{-1}(\Omega) \\ q & \rightarrow \ell_{q}\end{aligned}\right\}$ and the gradient operator $\left\{\begin{aligned} L^{2}(\Omega) & \rightarrow H^{-1}(\Omega)^{n} \\ q & \rightarrow \overrightarrow{\operatorname{grad} q}\end{aligned}\right\}$ are continuous. In particular, with (10.6),

$$
\begin{equation*}
\text { if } q \in L^{2}(\Omega) \text { then } \ell_{q} \stackrel{\text { denoted }}{=} q \text {. } \tag{10.8}
\end{equation*}
$$

(The space $L^{2}(\Omega)$ is the pivot space.)

Proof. (10.7) ${ }_{1}$ is given by (10.6). Let $q \in L^{2}(\Omega)$, with (10.2) we get grad $q \in H^{-1}(\Omega)^{n}$. We have, for all $\vec{\phi} \in H_{0}^{1}(\Omega)^{n}$, cf. (10.2),

$$
\left|\langle\operatorname{grad} q, \vec{\phi}\rangle_{H^{-1}, H_{0}^{1}}\right|=\left|-(q, \operatorname{div} \vec{\phi})_{L^{2}}\right| \leq\|q\|_{L^{2}}\|\operatorname{div} \vec{\phi}\|_{L^{2}} \leq\|q\|_{L^{2}}| | \operatorname{grad} \vec{\phi}\left\|_{\left(L^{2}\right)^{n^{2}}} \leq\right\| q\left\|_{L^{2}}\right\| \vec{\phi} \|_{\left(H_{0}^{1}\right)^{n}}
$$

Thus (10.7) ${ }_{2}$.
Let :

$$
\|\cdot\|_{+}:\left\{\begin{align*}
L^{2}(\Omega) & \rightarrow \mathbb{R} \tag{10.9}\\
v & \rightarrow\|v\|_{+}=\|v\|_{H^{-1}}+\|\overrightarrow{\operatorname{rad} v}\|_{H^{-1}} .
\end{align*}\right.
$$

Corollary 10.4 In $L^{2}(\Omega)$ the norms $\|.\|_{L^{2}}$ and $\|\cdot\|_{+}$are equivalent norms:

$$
\begin{equation*}
\exists c_{1}, c_{2}>0, \forall v \in L^{2}(\Omega), \quad c_{1}\|v\|_{+} \leq\|v\|_{L^{2}} \leq c_{2}\|v\|_{+} . \tag{10.10}
\end{equation*}
$$

Proof. (10.9) trivially defines a norm in $L^{2}(\Omega)$, and (10.7) gives $c_{1}=\frac{1}{1+c_{\Omega}}$.
Let $Z=\left(L^{2}(\Omega),\|\cdot\|_{+}\right)$. Thanks to $\frac{1}{c_{1}}, Z$ is a Banach space. Then consider the canonical injection $I_{+}: v \in\left(L^{2}(\Omega),\|\cdot\|_{L^{2}(\Omega)}\right) \rightarrow I_{+}(v)=v \in\left(L^{2}(\Omega),\|\cdot\|_{Z}\right)$: it is the algebraic identity and thus is bijective. And I_{+}is continuous (thanks to $\frac{1}{c_{1}}$). Thus $I_{+}{ }^{-1}: v \in\left(L^{2}(\Omega),\|\cdot\|_{Z}\right) \rightarrow I_{+}(v)=v \in\left(L^{2}(\Omega),\|\cdot\|_{L^{2}(\Omega)}\right)$ is continuous (open mapping theorem 8.3). Then let $c_{2}=\left\|I_{+}{ }^{-1}\right\|$.
10.2.2 Rellich theorem $L^{2}(\Omega) \rightarrow H^{-1}(\Omega)$

Reminder: An operator $\kappa \in \mathcal{L}(E ; F)$ is compact iff $\overline{\kappa\left(B_{E}(0,1)\right)}$ is compact in F.
Lemma 10.5 Let E and F be Banach spaces. If $\kappa \in \mathcal{L}(E ; F)$ is compact, then it dual $\kappa^{\prime}: F^{\prime} \rightarrow E^{\prime}$ is compact.

Proof. Let $\left(\ell_{n}\right) \in B_{F^{\prime}}(0,1)$. We have to prove that the sequence $\left(T^{\prime} . \ell_{n}\right) \in T^{\prime}\left(B_{F^{\prime}}\right) \subset E^{\prime}$ has a converging subsequence. Let $K=\overline{T\left(B_{E}(0,1)\right)}$. K is a compact in F since T is compact. Then consider the restriction $\phi_{n}=\ell_{n \mid K}: K \rightarrow \mathbb{R}$. So $\left(\phi_{n}\right)_{\mathbb{N}^{*}}$ is a sequence in $C^{0}(K ; \mathbb{R})$, and $\left(\phi_{n}\right)_{\mathbb{N}^{*}} \subset B_{F^{\prime}}(0,1)$ is a bounded set in F^{\prime}. Moreover $\left(\phi_{n}\right)_{\mathbb{N}^{*}}$ is equicontinuous since ℓ_{n} is linear continuous $\left.\left\|\ell_{n}(y)\right\| \leq\left\|\ell_{n}\right\|\|y\|_{F} \leq\|y\|_{F}\right)$. Thus the set $\left(\phi_{n}\right)_{\mathbb{N}^{*}}$ is relatively compact in $C^{0}(K ; \mathbb{R})$ (Ascoli theorem, see Brézis [6]). Thus we can extract a convergent subsequence $\left(\phi_{n_{k}}\right)_{k \in \mathbb{N}^{*}}$ in $C^{0}(K ; \mathbb{R})$. Thus, $T\left(B_{E}\right)$ being relatively compact and thus bounded, we have

$$
\sup _{x \in B_{E}}\left|\left\langle\ell_{n_{k}}-\ell_{n_{m}}, T \cdot x\right\rangle\right|_{k, m \rightarrow \infty}^{\longrightarrow} 0 .
$$

Thus $\left\|T^{\prime} \cdot \ell_{n_{k}}-T^{\prime} \cdot \ell_{n_{m}}\right\|_{E^{\prime}} \rightarrow 0$. Thus E^{\prime} being a Banach space, since E is, $\left(T^{\prime} . \ell_{n_{k}}\right)_{k \in \mathbb{N}^{*}}$ converges in E^{\prime}. Thus the set $\overline{\left(T^{\prime} \cdot \ell_{n_{k}}\right)_{k \in \mathbb{N}^{*}}}$ is compact, thus T^{\prime} is compact.

Theorem 10.6 (Rellich) The canonical injection $T: v \in L^{2}(\Omega) \rightarrow v \in H^{-1}(\Omega)$ is compact.

Proof. $I_{10}: v \in H_{0}^{1}(\Omega) \rightarrow v \in L^{2}(\Omega)$ is compact, Rellich theorem see Brézis [6], thus $I_{10}^{\prime}: v \in L^{2}(\Omega) \rightarrow$ $v \in H^{-1}(\Omega)$ is compact, cf. Lemma 10.5

10.2.3 Petree-Tartar compactness theorem

Let E and F be two Banach spaces, and $T \in \mathcal{L}(E ; F)$ (linear and continuous). The purpose is to prove that the range of T is eventually closed. But to use theorem 8.3 and (8.8) to prove it, can be difficult. It can be easier to find a compact operator $\kappa: E \rightarrow G$, where G is a Banach space, s.t.

$$
\begin{equation*}
\exists \gamma>0, \forall x \in E, \quad\|T \cdot x\|_{F}+\|\kappa \cdot x\|_{G} \geq \gamma\|x\|_{E} \tag{10.11}
\end{equation*}
$$

Theorem 10.7 Let E, F and G be three Banach spaces, let $T \in \mathcal{L}(E ; F)$ be injective (one-to-one), and $\kappa \in \mathcal{L}(E ; G)$ be compact. If (10.11) holds then (8.8) holds, and thus $\operatorname{Im}(T)$ is closed.
(If T is not injective, consider $E / \operatorname{Ker}(T)$.)
Proof. Suppose (8.8) is false. Thus there exists a sequence $\left(x_{n}\right)_{n \in \mathbb{N}^{*}}$ in E s.t. $\left\|x_{n}\right\|_{E}=1$ and $\left\|T . x_{n}\right\| \longrightarrow_{n \rightarrow \infty} 0$, cf. (8.10). And κ being compact and $\left(x_{n}\right)_{n \in \mathbb{N}^{*}}$ being bounded, the sequence $\left(\kappa . x_{n}\right)_{n \in \mathbb{N}^{*}}$ has a convergent subsequence $\left(\kappa . x_{n_{k}}\right)_{k \in \mathbb{N}^{*}}$ that converges in the Banach space G. With T continuous, κ compact and the hypothesis (10.11), we get

$$
\gamma\left\|x_{n_{i}}-x_{n_{j}}\right\|_{E} \leq\left\|T \cdot x_{n_{i}}-T \cdot x_{n_{j}}\right\|_{F}+\left\|\kappa \cdot x_{n_{i}}-\kappa \cdot x_{n_{j}}\right\|_{G}^{i, j \rightarrow \infty} \underset{\longrightarrow}{\longrightarrow} 0+0=0
$$

Thus $\left(x_{n_{k}}\right)_{k \in \mathbb{N}^{*}}$ is a Cauchy sequence in the Banach space E, so converges to a limit $x \in E$. Since $\left\|T . x_{n_{k}}\right\| \longrightarrow_{k \rightarrow \infty} 0$ and T is continuous, we get $\|T . x\|=0$, thus $x=0$ since T is injective. But $\left\|x_{n_{k}}\right\|_{E}=1$ implies $\|x\|_{E}=1$. Absurd, thus (8.8) is true.

10.2.4 The range of $\overrightarrow{\operatorname{grad}}: L^{2}(\Omega) \rightarrow H^{-1}(\Omega)^{n}$ is closed

We can now prove theorem 10.1 Let $T=\overrightarrow{\operatorname{grad}}: L^{2}(\Omega) \rightarrow H^{-1}(\Omega)^{n}$, and κ the canonical injection $L^{2}(\Omega) \rightarrow H^{-1}(\Omega)$. Since T is linear continuous, cf. (10.7), and κ is compact, cf. Rellich theorem 10.6, the Petree-Tartar theorem 10.7 implies that the range of T is closed.

11 The closed range theorem

The results and full proofs can be found e.g. in Brézis [6.

11.0.1 The closed range theorem

Let $T \in L(E ; F)$, so $T^{\prime} \in \mathcal{L}\left(F^{\prime} ; E^{\prime}\right)$, cf. (8.5). We have

$$
\begin{equation*}
\operatorname{Ker}\left(T^{\prime}\right)=\left\{m \in F^{\prime} \text { s.t. } T^{\prime} . m=0\right\}=\left\{m \in F^{\prime} \text { s.t. } m \cdot T=0\right\} \subset F^{\prime}, \tag{11.1}
\end{equation*}
$$

since $m \in \operatorname{Ker}\left(T^{\prime}\right) \Leftrightarrow T^{\prime} \cdot m=0 \Leftrightarrow\left\langle T^{\prime} \cdot m, x\right\rangle_{E^{\prime}, E}=0=\langle m, T \cdot x\rangle_{F^{\prime}, F}=m(T \cdot x)=(m \circ T)(x)$ for all $x \in E$ $\Leftrightarrow m \cdot T=0$, with $m \cdot T$ the notation of $m \circ T$ when the maps are linear maps.

If $M \subset E$ is a linear subspace in E then the dual orthogonal of M is

$$
\begin{equation*}
M^{o}:=\left\{\ell \in E^{\prime}:\langle\ell, x\rangle_{E^{\prime}, E}=0, \forall x \in M\right\} \quad\left(\subset E^{\prime}\right) \tag{11.2}
\end{equation*}
$$

(the subspace of E^{\prime} of linear forms vanishing on M). M^{o} is a linear subspace in E^{\prime} (trivial). And M^{o} is closed in E^{\prime} : Indeed if $\left(\ell_{n}\right)_{\mathbb{N}^{*}}$ is a Cauchy sequence in M^{o}, so $\left\|\ell_{n}-\ell_{m}\right\|_{E^{\prime}} \longrightarrow_{n, m \rightarrow \infty} 0$, then, for $x \in E$ the sequence $\left(\ell_{n}(x)\right)$ is a Cauchy sequence in \mathbb{R}, thus convergence toward a real named $\ell(x)$; This defines a function $\ell: E \rightarrow \mathbb{R}$. And $\ell\left(x_{1}+\lambda x_{2}\right)=\lim _{n \rightarrow \infty} \ell_{n}\left(x_{1}+\lambda x_{2}\right)=\lim _{n \rightarrow \infty} \ell_{n}\left(x_{1}\right)+\lambda \lim _{n \rightarrow \infty}\left(x_{2}\right)=$ $\ell\left(x_{1}\right)+\lambda \ell\left(x_{2}\right)$, thus ℓ is linear, and, for $x \in E, \ell$ is continuous at x since $\left|\ell \cdot x^{\prime}-\ell \cdot x\right| \leq \mid\left(\ell-\ell_{n}\right) \cdot x^{\prime}+(\ell-$ $\left.\ell_{n}\right) \cdot x\left|+\left|\ell_{n} \cdot x^{\prime}-\ell_{n} \cdot x\right| \leq\left(\left\|\ell-\ell_{n}\right\|+\left\|\ell_{n}\right\|\right)\left\|x^{\prime}-x\right\|_{E}\right.$ with $\left\|\ell_{n}\right\| \leq\left\|\ell_{N}\right\|+1$ for N large enough and $n \geq N$.

If $N \subset F^{\prime}$ is a linear subspace in F^{\prime} then let

$$
\begin{equation*}
N^{\perp}:=\left\{y \in F:\langle m, y\rangle_{F^{\prime}, F}=0, \forall m \in N\right\} \quad(\subset F) . \tag{11.3}
\end{equation*}
$$

Then N^{\perp} is a linear subspace in F (trivial) that is closed in F (similar proof than for M^{o}). To be compared with, cf. (11.2),

$$
\begin{equation*}
N^{o}=\left\{y^{\prime \prime} \in F^{\prime \prime}:\left\langle y^{\prime \prime}, m\right\rangle_{F^{\prime \prime}, F^{\prime}}=0, \forall m \in N\right\} \quad\left(\subset F^{\prime \prime}\right) . \tag{11.4}
\end{equation*}
$$

Remark 11.1 If F is reflexive, that is $F^{\prime \prime} \simeq F$ (identification) then $N^{o} \simeq N^{\perp}$ (identification). Indeed, with J the canonical isomorphism given in (8.7), if $y \in N^{\perp}$ then let $y^{\prime \prime}=J(y) \in F$, so for all $m \in N$ we have $0=m . y=y^{\prime \prime} . m$, and thus $y^{\prime \prime} \in N^{o}$; And if $y^{\prime \prime} \in N^{o}$ then let $y \in F$ s.t. $J(y)=y^{\prime \prime}$ (thanks to the reflexivity), then for all $m \in N$ we have $0=y^{\prime \prime} . m=m . y$, and thus $y \in N^{\perp}$.

Theorem 11.2 (Closed range theorem) Let E and F be Banach spaces and $T \in \mathcal{L}(E ; F)$ (linear and continuous). Then the following properties are equivalent:
(i) $\operatorname{Im}(T)$ is closed in F,
(ii) $\operatorname{Im}\left(T^{\prime}\right)$ is closed in E^{\prime},
(iii) $\operatorname{Im}(T)=\operatorname{Ker}\left(T^{\prime}\right)^{\perp}$,
(iv) $\operatorname{Im}\left(T^{\prime}\right)=\operatorname{Ker}(T)^{o}$.

We then deduce, with (8.16):
Corollary 11.3 If $\operatorname{Im}(T)$ is closed in F then $\operatorname{Im}\left(T^{\prime}\right)$ is closed in E^{\prime}, thus

$$
\begin{equation*}
\exists \gamma^{\prime}>0, \quad \forall \ell \in F^{\prime}, \quad\left\|T^{\prime} . \ell\right\|_{E^{\prime}} \geq \gamma^{\prime}\|\ell\|_{F^{\prime} / \operatorname{Ker}\left(T^{\prime}\right)} \tag{11.5}
\end{equation*}
$$

Proof. The full proof of theorem 11.2 (even for unbounded operators with dense domain of definition) can be found e.g. in Brézis [6] or Yosida [34] (for locally convex spaces that are metrizable and complete). We give here the proof in the simplified case of T a linear continuous mapping between two Banach spaces (sufficient for our needs). We need some lemmas:

Lemma 11.4 If E is a Banach space and M is a linear subspace in E, then

$$
\begin{equation*}
\bar{M}=\left(M^{o}\right)^{\perp} . \tag{11.6}
\end{equation*}
$$

Proof. If $x \in M$ then $\langle\ell, x\rangle_{E^{\prime}, E}=0$ for all $\ell \in M^{o}$, thus $x \in\left(M^{o}\right)^{\perp}$, cf. (11.3). And ($\left.M^{o}\right)^{\perp}$ being closed we get $\bar{M} \subset\left(M^{o}\right)^{\perp}$.

Conversely: Suppose $x_{0} \in\left(M^{o}\right)^{\perp}$ and $x_{0} \notin \bar{M}$; Then $\left\{x_{0}\right\}$ being compact and \bar{M} being closed and convex (it is a linear subspace), there exists a hyperplane that strictly separates x_{0} and \bar{M} (geometric form or the Hahn-Banach theorem), that is there exists $\ell \in E^{\prime}$ and $\alpha \in \mathbb{R}$ s.t. $\langle\ell, x\rangle_{E^{\prime}, E}<\alpha<\left\langle\ell, x_{0}\right\rangle_{E^{\prime}, E}$ for all $x \in M$. And M being a linear space, taking $-x \in M$, it follows that $\langle\ell, x\rangle_{E^{\prime}, E}=0$ for all $x \in M$, thus $\ell \in M^{o}$. And $\langle\ell, x\rangle_{E^{\prime}, E}=0$ for all $x \in M$ implies $\left\langle\ell, x_{0}\right\rangle_{E^{\prime}, E}>0$ with $x_{0} \notin \bar{M}$, thus $\ell \notin M^{o}$. Absurd, thus $\left(M^{o}\right)^{\perp} \subset \bar{M}$.

Lemma 11.5 If G and L are two closed subspaces in a Banach space, then

$$
\begin{equation*}
G \cap L=\left(G^{o}+L^{o}\right)^{\perp}, \quad \text { and } \quad G^{o} \cap L^{o}=(G+L)^{o} . \tag{11.7}
\end{equation*}
$$

Proof. (11.7) $)_{1}$: If $x \in G \cap L$, and if $m=g+\ell \in G^{o}+L^{o}$, then $m \cdot x=g \cdot x+\ell \cdot x=0+0$, thus $x \in\left(G^{o}+L^{o}\right)^{\perp}$.

Conversely, we have $\left(G^{o}+L^{o}\right)^{\perp} \subset\left(G^{o}\right)^{\perp}$ (particular case of: If $Y \subset Z$ then $Z^{\perp} \subset Y^{\perp}$), and $\left(G^{o}\right)^{\perp}=G$ since G is closed,, thus if $x \in\left(G^{o}+L^{o}\right)^{\perp}$ then $x \in G$; And similarly $x \in L$,; Thus $x \in G \cap L$.

Similar proof for $(11.7)_{2}$.
Let $E \times F$ be equipped with the (usual) norm $\|(x, y)\|_{E \times F}=\max \left(\|x\|_{E},\|y\|_{F}\right)$, so $E \times F$ is a Banach space.
Lemma 11.6 If T is continuous, then its graph

$$
\begin{equation*}
G(T)=\{(x, y) \in E \times F \text { s.t. } \exists x \in E, y=T . x\}=\{(x, T . x) \in E \times F\} \tag{11.8}
\end{equation*}
$$

is closed in $E \times F$.
Proof. If $\left.\left(\left(x_{n}, T \cdot x_{n}\right)\right)\right)_{\mathbb{N}^{*}}$ is a Cauchy sequence in $G(T)$, then, E being a Banach space, $\left(x_{n}\right)_{\mathbb{N}^{*}}$ converges toward a $x \in E$, thus, T being continuous, $T . x_{n}$ convergence toward $T . x \in F$, so $(x, T . x) \in G(T)$.

We have

$$
\begin{equation*}
G\left(T^{\prime}\right)=\left\{\left(m, T^{\prime} . m\right) \in F^{\prime} \times E^{\prime}\right\} \tag{11.9}
\end{equation*}
$$

Lemma 11.7 If T is continuous, then $G\left(T^{\prime}\right)$ is closed in $F^{\prime} \times E^{\prime}$, and

$$
\begin{equation*}
(m, \ell) \in G\left(T^{\prime}\right) \Longleftrightarrow(-\ell, m) \in G(T)^{o} \tag{11.10}
\end{equation*}
$$

Proof. Let $\left(\left(m_{n}, T^{\prime} . m_{n}\right)\right)_{\mathbb{N}^{*}}$ be a sequence in $G(T)$ s.t. $\left(m_{n}, T^{\prime} . m_{n}\right) \longrightarrow_{n \rightarrow \infty}(m, z) \in F^{\prime} \times E^{\prime}$. Thus $m_{n} \longrightarrow m \in F^{\prime}$ and $T^{\prime} . m_{n} \longrightarrow{ }_{n \rightarrow \infty} k \in E^{\prime}$, that is $\left\langle T^{\prime} . m_{n}, x\right\rangle_{E^{\prime}, E} \longrightarrow_{n \rightarrow \infty}\langle k, x\rangle_{E^{\prime}, E} \in \mathbb{R}$ for all $x \in E$. And we have to check that $k=T^{\prime} . m$. For all $x \in E$, we have $\left\langle T^{\prime} . m_{n}, x\right\rangle_{E^{\prime}, E}=\left\langle m_{n}, T . x\right\rangle_{F^{\prime}, F}$, thus $\left\langle m_{n}, T . x\right\rangle_{F^{\prime}, F} \longrightarrow_{n \rightarrow \infty}\langle k, x\rangle_{E^{\prime}, E}$, i.e. $\left\langle T^{\prime} m_{n}, x\right\rangle_{F^{\prime}, F} \longrightarrow_{n \rightarrow \infty}\langle k, x\rangle_{E^{\prime}, E}$, thus $T^{\prime} m_{n}, \longrightarrow_{n \rightarrow \infty} k \in F^{\prime}$. So $G\left(T^{\prime}\right)$ is closed.
$(m, \ell) \in G\left(T^{\prime}\right) \Leftrightarrow \ell=T^{\prime} . m \Leftrightarrow\langle\ell, x\rangle_{E^{\prime}, E}=\left\langle T^{\prime} . m, x\right\rangle_{E^{\prime}, E}=\langle m, T \cdot x\rangle_{E^{\prime}, E}$ for all $x \in E \Leftrightarrow\langle\ell, x\rangle_{E^{\prime}, E}-$ $\langle m, T \cdot x\rangle_{E^{\prime}, E}=0$ for all $x \in E \Leftrightarrow\langle(\ell,-m),(x, T \cdot x)\rangle_{E^{\prime} \times F^{\prime}, E \times F}=0$ for all $x \in E \Leftrightarrow(\ell,-m) \in G(T)^{o}$.

Define

$$
\begin{equation*}
L:=E \times\{0\} . \tag{11.11}
\end{equation*}
$$

L is closed in $E \times F$ since E and $\{0\}$ are, and

$$
\begin{equation*}
L^{o}=\{0\} \times F^{\prime} \tag{11.12}
\end{equation*}
$$

Indeed $L^{o}=\left\{(\ell, m) \in E^{\prime} \times F^{\prime}:\langle(\ell, m),(x, 0)\rangle_{E^{\prime} \times F^{\prime}, E \times F}=0, \forall x \in E\right\}=\left\{(\ell, m) \in E^{\prime} \times F^{\prime}:\langle\ell, x\rangle_{E^{\prime}, E}+\right.$ $0=0, \forall x \in E\}=\{0\} \times F^{\prime}$.
Lemma 11.8

$$
\begin{gather*}
\operatorname{Ker}(T) \times\{0\}=G(T) \cap L \tag{11.13}\\
E \times \operatorname{Im}(T)=G(T)+L \tag{11.14}\\
\{0\} \times \operatorname{Ker}\left(T^{\prime}\right)=G(T)^{o} \cap L^{o} \tag{11.15}\\
\operatorname{Im}\left(T^{\prime}\right) \times F^{\prime}=G(T)^{o}+L^{o} \tag{11.16}
\end{gather*}
$$

Proof. $(x, y) \in \operatorname{Ker}(T) \times\{0\}$ iff $T x=0$ and $y=0 ;$ And $(x, y) \in G(T) \cap L$ iff $y=T x$ and $y=0$, thus (11.13).
$\left(x_{1}, y_{1}\right) \in E \times \operatorname{Im}(T)$ iff $\left(x_{1}, y_{1}\right)=\left(x_{1}, T . x_{1}^{\prime}\right)$ for some $x_{1}^{\prime} \in E ;$ And $\left(x_{2}, y_{2}\right) \in G(T)+L$ iff $\exists x_{2}^{\prime} \in E$ and $\exists x_{2}^{\prime \prime} \in E$ s.t. $\left(x_{2}, y_{2}\right)=\left(x_{2}^{\prime}, T . x_{2}^{\prime}\right)+\left(x_{2}^{\prime \prime}, 0\right)=\left(x_{2}^{\prime}+x_{2}^{\prime \prime}, T . x_{2}^{\prime}\right)=\left(x_{3}, T .\left(x_{3}-x_{2}^{\prime}\right)\right)$, thus (11.14).
$(\ell, m) \in\{0\} \times \operatorname{Ker}\left(T^{\prime}\right)$ iff $\ell=0$ and $m \in \operatorname{Ker} T^{\prime}$; And $(\ell, m) \in G(T)^{o} \cap L^{o}$ iff $(-m, \ell) \in G\left(T^{\prime}\right)$, cf. (11.10), and $(\ell, m) \in L^{o}$, i.e. iff $\ell=-T^{\prime} . m$ and $\ell=0$, i.e. iff $\ell=0$ and $m \in \operatorname{Ker} T^{\prime}$, thus (11.15).
$(\ell, m) \in \operatorname{Im}\left(T^{\prime}\right) \times F^{\prime}$ iff $\exists k \in F^{\prime}$ s.t. $\ell=T^{\prime} . k$ and $m \in F^{\prime} ;$ And $(\ell, m) \in G(T)^{o}+L^{o}$ iff $\exists\left(\ell_{1}, m_{1}\right) \in$ $G(T)^{o}$ and $\exists\left(\ell_{2}, m_{2}\right) \in L^{o}$ s.t. $\ell=\ell_{1}+\ell_{2}$ and $m=m_{1}+m_{2}$, i.e., with (11.10) and (11.12), iff $\exists m_{1} \in F^{\prime}$ (and then $\left.-\ell_{1}=T^{\prime} . m_{1}\right)$ and $m_{2} \in F^{\prime}$ s.t. $\ell=-T . m_{1}+0$ and $m=m_{1}+m_{2}$, i.e. iff $\ell \in \operatorname{Im}\left(T^{\prime}\right)$ and $m \in F^{\prime}$, thus (11.16).

Corollary 11.9

$$
\begin{gather*}
\operatorname{Ker}(T)=\operatorname{Im}\left(T^{\prime}\right)^{\perp} \tag{11.17}\\
\operatorname{Ker}\left(T^{\prime}\right)=\operatorname{Im}(T)^{o}, \tag{11.18}\\
(\operatorname{Ker}(T))^{o}=\overline{\operatorname{Im}\left(T^{\prime}\right)}, \tag{11.19}\\
\operatorname{Ker}\left(T^{\prime}\right)^{\perp}=\overline{\operatorname{Im}(T)} \tag{11.20}
\end{gather*}
$$

Proof. (11.16) gives $R\left(T^{\prime}\right)^{\perp} \times\{0\}=\left(G(T)^{o}+L^{o}\right)^{\perp}=G(T) \cap L$, cf. (11.7), thus $=\operatorname{Ker}(T) \times\{0\}$, cf. (11.13), thus (11.17). Thus (11.19).
(11.14) gives $\{0\} \times \operatorname{Im}(T)^{o}=(G(T)+L)^{o}=G^{o} \cap L^{o}$, cf. (11.7), thus $=\{0\} \times \operatorname{Ker}\left(T^{\prime}\right)$, cf. (11.15), thus (11.18). Thus (11.20).
Proof of theorem 11.2, apply corollary 11.9 .

12 A well-posed mixed problem

12.1 Notations

Let V and Q be two Banach spaces. Let $b(\cdot, \cdot): V \times Q \rightarrow \mathbb{R}$ be a bilinear form. $b(\cdot, \cdot)$ is said to be continuous (or bounded) iff

$$
\begin{equation*}
\exists c>0, \quad \forall(v, q) \in B_{V}(0,1) \times B_{Q}(0,1), \quad|b(v, q)| \leq c \tag{12.1}
\end{equation*}
$$

Then let

$$
\begin{equation*}
\|b\|:=\sup _{\substack{v \in B_{V}(0,1) \\ q \in B_{Q}(0,1)}}|b(v, q)| . \tag{12.2}
\end{equation*}
$$

And let $\mathcal{L}(V, Q ; \mathbb{R})$ be the space of bilinear and continuous forms with its (usual) norm given by (12.2).
If $b(\cdot, \cdot) \in \mathcal{L}(V, Q ; \mathbb{R})$ (bilinear and continuous), then define

$$
B:\left\{\begin{array}{c}
V \rightarrow Q^{\prime} \tag{12.3}\\
v \rightarrow B v
\end{array}\right\} \quad \text { and } \quad B^{t}:\left\{\begin{array}{c}
Q
\end{array} \rightarrow V^{\prime}, ~\left(B^{t} q\right\}\right.
$$

by

$$
\begin{equation*}
b(v, q)=\langle B v, q\rangle_{Q^{\prime}, Q}=\left\langle B^{t} q, v\right\rangle_{V^{\prime}, V} . \tag{12.4}
\end{equation*}
$$

Thus B and B^{t} are linear (trivial) and continuous with

$$
\begin{equation*}
\|B\|=\left\|B^{t}\right\|=\|b\| . \tag{12.5}
\end{equation*}
$$

Indeed $\|B v\|_{V^{\prime}}=\sup _{q \in B_{Q}(0,1)}\left|\langle B v, q\rangle_{Q^{\prime}, Q}\right|=\sup _{q \in B_{Q}(0,1)}|b(v, q)| \leq \sup _{q \in B_{Q}(0,1)}\|b\|\|v\|_{V}\|q\|_{Q}=$ $\|b\|\|v\|_{V}$ gives $\|B\| \leq\|b\|$ (continuity), and $|b(x, y)|=\left|\langle B v, q\rangle_{Q^{\prime}, Q}\right| \leq\|B x\|_{Q^{\prime}}\|y\|_{Q} \leq\|B\|\|x\|_{V}\|y\|_{Q}$ gives $\|b\| \leq\|B\|_{V^{\prime}}$. So $B \in \mathcal{L}\left(V ; Q^{\prime}\right)$. Idem pour B^{t}.

Suppose Q reflexive, cf. definition 8.2, then the dual $B^{\prime} \in \mathcal{L}\left(Q^{\prime \prime} ; V^{\prime}\right)$ of $B \in \mathcal{L}\left(V ; Q^{\prime}\right)$, defined by $\left\langle B^{\prime} v, \ell\right\rangle_{V^{\prime}, V}=\langle v, B \ell\rangle_{Q^{\prime \prime}, Q}$ for all $v \in Q^{\prime \prime}$ and $\ell \in V^{\prime}$ cf. (8.5), is identified to B^{t} :

$$
\begin{equation*}
\mathcal{L}\left(Q^{\prime \prime} ; V^{\prime}\right) \ni B^{\prime} \simeq B^{t} \in \mathcal{L}\left(Q ; V^{\prime}\right) \tag{12.6}
\end{equation*}
$$

Suppose V reflexive, cf. definition 8.2, then the dual $\left(B^{t}\right)^{\prime} \in \mathcal{L}\left(V^{\prime \prime} ; Q^{\prime}\right)$ of $B^{t} \in \mathcal{L}\left(Q ; V^{\prime}\right)$, defined by $\left\langle\left(B^{t}\right)^{\prime} v, q\right\rangle_{Q^{\prime}, Q}=\left\langle v, B^{t} \ell\right\rangle_{V^{\prime \prime}, V^{\prime}}$ for all $v \in Q^{\prime \prime}$ and $\ell \in V^{\prime}$ cf. (8.5), is identified to B^{t} :

$$
\begin{equation*}
\mathcal{L}\left(V^{\prime \prime} ; Q^{\prime}\right) \ni\left(B^{t}\right)^{\prime} \simeq B \in \mathcal{L}\left(V ; Q^{\prime}\right) \tag{12.7}
\end{equation*}
$$

12.2 The mixed problem

Let $a(\cdot, \cdot): V \times V \rightarrow \mathbb{R}$ and $b(\cdot, \cdot): V \times Q \rightarrow \mathbb{R}$ be bilinear forms. Let $f \in V^{\prime}$ and $g \in Q^{\prime}$ (linear forms). A mixed problem is a problem of the type: Find $(u, p) \in V \times Q$ s.t.

$$
\left\{\begin{align*}
a(u, v)+b(v, p) & =\langle f, v\rangle_{V^{\prime}, V}, & \forall v \in V \tag{12.8}\\
b(u, q) & =\langle g, q\rangle_{Q^{\prime}, Q}, & \forall q \in Q
\end{align*}\right.
$$

cf. (1.1).

12.3 The inf-sup conditions

For the existence (and control) of p, we suppose that the range $\operatorname{Im}\left(B^{t}\right)$ of $B^{t}: Q \rightarrow V^{\prime}$ is closed, that is, cf. (8.10),

$$
\begin{equation*}
\exists \beta>0, \forall q \in Q,\left\|B^{t} q\right\|_{V^{\prime}} \geq \beta\|q\|_{Q / \operatorname{Ker}\left(B^{t}\right)} \tag{12.9}
\end{equation*}
$$

i.e.,

$$
\begin{equation*}
\exists \beta>0, \forall q \in Q, \sup _{v \in V} \frac{b(v, q)}{\|v\|_{V / \operatorname{Ker}(B)}} \geq \beta\|q\|_{Q / \operatorname{Ker}\left(B^{t}\right)} \tag{12.10}
\end{equation*}
$$

also written as the inf-sup condition $\inf _{q \in Q} \sup _{v \in V} \frac{b(v, q)}{\|v\|_{V / \operatorname{Ker}(B)}\|q\|_{Q / \operatorname{Ker}\left(B^{t}\right)}} \geq \beta$.
For the existence (and control) of u, we suppose the range $\operatorname{Im}(B)$ of $B: V \rightarrow Q^{\prime}$ is closed, that is, we suppose, cf. (8.10),

$$
\begin{equation*}
\exists \beta>0, \forall v \in V,\|B v\|_{Q^{\prime}} \geq \beta\|v\|_{V / \operatorname{Ker}(B)} \tag{12.11}
\end{equation*}
$$

i.e.,

$$
\begin{equation*}
\exists \beta>0, \forall v \in V, \sup _{q \in Q} \frac{b(v, q)}{\|q\|_{Q / \operatorname{Ker}\left(B^{t}\right)}} \geq \beta\|v\|_{V / \operatorname{Ker}(B)} \tag{12.12}
\end{equation*}
$$

also written as the inf-sup condition $\inf _{v \in V} \sup _{q \in Q} \frac{b(v, q)}{\|v\|_{V / \operatorname{Ker}(B)}\|q\|_{Q / \operatorname{Ker}\left(B^{t}\right)}} \geq \beta$.
Remark: With (12.6) or (12.7), the reflexivity of Q or V gives that (12.11) implies (12.9) or (12.9) implies (12.11).

12.4 The theorem for mixed problem

Theorem 12.1. Hypotheses: (i) $\left(V,(\cdot, \cdot)_{V}\right)$ is a Hilbert space, $\left(Q,\|\cdot\|_{Q}\right)$ is a reflexive Banach space, $f \in V^{\prime}$, and $g \in Q^{\prime}$.
(ii) The bilinear form $a(\cdot, \cdot)$ is continuous on V, cf. (12.1), and coercive on $\operatorname{Ker}(B)$, that is,

$$
\begin{equation*}
\exists \alpha>0, \quad \forall v \in \operatorname{Ker}(B), \quad a(v, v) \geq \alpha\|v\|_{V}^{2} \tag{12.13}
\end{equation*}
$$

(iii) The bilinear form $b(\cdot, \cdot)$ is continuous on $V \times Q$, cf. (12.1), and B is surjective ($=$ onto), so we have (12.11) and then (12.9) since Q is reflexive.
Conclusion: Problem (12.8) has a unique solution $(u, p) \in V \times Q / \operatorname{Ker} B^{t}$ that depends continuously on f and g, and more precisely, with $C_{a}=\left(1+\frac{\|a\|}{\alpha}\right)$,

$$
\left\{\begin{array}{l}
\|u\|_{V} \leq \frac{1}{\alpha}\|f\|_{V^{\prime}}+\frac{C_{a}}{\beta}\|g\|_{Q^{\prime}}, \tag{12.14}\\
\|p\|_{Q / \mathrm{Ker} B^{t}} \leq \frac{C_{a}}{\beta}\left(\|f\|_{V^{\prime}}+\frac{\|a\|}{\beta}\|g\|_{Q^{\prime}}\right)
\end{array}\right.
$$

Proof. Let $u_{g} \in V$ s.t. $B . u_{g}=g$, exists since B is surjective, and $\left\|u_{g}\right\|_{V / \operatorname{Ker}(B)} \leq \frac{1}{\beta}\|g\|_{Q^{\prime}}$, cf. (12.11).
Let $u_{0} \in \operatorname{Ker}(B)$ be the solution of the problem: Find $u_{0} \in \operatorname{Ker}(B)$ s.t.

$$
\begin{equation*}
a\left(u_{0}, v_{0}\right)=\left\langle f, v_{0}\right\rangle_{V^{\prime}, V}-a\left(u_{g}, v_{0}\right), \quad \forall v_{0} \in \operatorname{Ker}(B) . \tag{12.15}
\end{equation*}
$$

The Lax-Milgram theorem tells that (12.15) is well-posed: Indeed, $\left(\operatorname{Ker} B,(\cdot, \cdot)_{V}\right)$ is a Hilbert space, $a(\cdot, \cdot)$ is bilinear continuous coercive, and $F: v_{0} \in \operatorname{Ker}(B) \rightarrow F\left(v_{0}\right):=\left\langle f, v_{0}\right\rangle_{V^{\prime}, V}-a\left(u_{g}, v_{0}\right)$ is linear (trivial) and continuous on $\operatorname{Ker}(B)$, with $\|F\|_{V^{\prime}} \leq\|f\|_{V^{\prime}}+\|a\|\left\|u_{g}\right\|_{V}$ (easy check). So u_{0} exists, is unique, and $\left\|u_{0}\right\|_{V} \leq \frac{1}{\alpha}\|F\|_{V^{\prime}}$, that is, $\left\|u_{0}\right\|_{V} \leq \frac{1}{\alpha}\left(\|f\|_{V^{\prime}}+\|a\|\left\|u_{g}\right\|_{V}\right) \leq \frac{1}{\alpha}\left(\|f\|_{V^{\prime}}+\|a\| \frac{1}{\beta}\|g\|_{Q^{\prime}}\right)$.

Then let $u:=u_{0}+u_{g}$. So $a(u, v)=\langle f, v\rangle_{V^{\prime}, V}$, cf. (12.15), and $u_{0} \in \operatorname{Ker}(B)$ and $B u_{g}=g$ give $b(u, q)=b\left(u_{0}, q\right)+b\left(u_{g}, q\right)=0+\langle g, q\rangle_{Q^{\prime}, Q}$, therefore u is as solution of (12.8).

Moreover u is independent of u_{g} : If si u_{g}^{\prime} also satisfies $B u_{g}^{\prime}=g$, if $u_{0}^{\prime} \in \operatorname{Ker}(B)$ is the associated solution, if $u^{\prime}=u_{0}^{\prime}+u_{g}^{\prime}$, then $u-u^{\prime}=u_{0}-u_{0}^{\prime}+u_{g}-u_{g}^{\prime} \in \operatorname{Ker}(B)$ (since $B\left(u_{g}-u_{g}^{\prime}\right)=g-g=0$) and $a\left(u-u^{\prime}, v_{0}\right)=0$ for all $v_{0} \in \operatorname{Ker}(B)$, thus $u-u^{\prime}=0($ coercitivy of $a(\cdot, \cdot)$ on $\operatorname{Ker}(B))$, and $u=u^{\prime}$. Thus $u=u_{0}+u_{g} \in V$ exists and is unique.

And $\|u\|_{V} \leq\left\|u_{0}\right\|_{V}+\left\|u_{g}\right\|_{V} \leq \frac{1}{\alpha}\left(\|f\|_{V^{\prime}}+\|a\| \frac{1}{\beta}\|g\|_{Q^{\prime}}\right)+\frac{1}{\beta}\|g\|_{Q^{\prime}}$, that is (12.14) 1_{1}.
Then we look for p solution of $b(v, p)=a(u, v)-\langle f, v\rangle_{V^{\prime}, V}$ for all $v \in V$. Let $L(v):=a(u, v)-\langle f, v\rangle_{V^{\prime}, V}$. So if p exists then $L(v)=b(v, p)$, thus L vanishes on $\operatorname{Ker}(B)$, i.e., $L \in(\operatorname{Ker}(B))^{\circ}$. And $(\operatorname{Ker}(B))^{\circ}=$ $\overline{\operatorname{Im}\left(B^{t}\right)}$, so $(\operatorname{Ker}(B))^{\circ}=\operatorname{Im}\left(B^{t}\right)$ (closed ranged theorem 11.2). Thus there exists $p \in Q$ s.t. $L=B^{t} p$. And $\left\|B^{t} p\right\|_{V^{\prime}} \geq \beta\|p\|_{Q / \operatorname{Ker} B^{t}}$, cf. (12.9). Then (12.14) $)_{2}$.

12.5 The saddle point problem

Let $L: V \times Q \rightarrow \mathbb{R}$ be defined by

$$
\begin{equation*}
\mathcal{L}(v, q)=\frac{1}{2} a(v, \vec{v})+b(v, q)-(f, v)_{L^{2}}-(g, q)_{L^{2}} \tag{12.16}
\end{equation*}
$$

If $a(\cdot, \cdot)$ is symmetric then L is the Lagrangean bilinear form associated to the mixed problem (12.8). And the associated optimization problem is: Find $(u, p) \in V \times Q$ (saddle point) s.t.

$$
\begin{equation*}
\mathcal{L}(u, p)=\inf _{v \in V}\left(\sup _{q \in Q} \mathcal{L}(v, q)\right) . \tag{12.17}
\end{equation*}
$$

If (u, p) is a solution of (12.17), then, $a(\cdot, \cdot)$ being symmetric,

$$
\begin{cases}\forall v \in V, & \frac{\partial \mathcal{L}}{\partial v}(u, p) \cdot v=\lim _{h \rightarrow 0} \frac{\mathcal{L}(u+h v, p)-\mathcal{L}(u,,)}{h}=a(u, v)+b(u, q)-\langle f, v\rangle, \tag{12.18}\\ \forall q \in Q, & \frac{\partial \mathcal{L}}{\partial q}(u, p) \cdot q=\lim _{h \rightarrow 0} \frac{\mathcal{L}(u, p+h q)-\mathcal{L}(u, p)}{h}=b(u, q)-\langle g, q\rangle .\end{cases}
$$

So (u, p) is solution of (12.8).

13 The surjectivites of the divergence operator

Let Ω be an open bounded set in \mathbb{R}^{n}.
Let $b(\cdot, \cdot)$ be defined by $b:\left\{\begin{aligned} V \times Q & \rightarrow \mathbb{R} \\ (\vec{v}, q) & \rightarrow b(v, q)=\int_{\Omega} \operatorname{div} \vec{v}(x) q(x) d \Omega\end{aligned}\right\}$ where V and Q are appropriate Banach spaces, see below $(b(\cdot, \cdot)$ is bilinear $)$.

Let $B: V \rightarrow Q^{\prime}$ be the associated operator defined by $\langle B v, q\rangle_{Q^{\prime}, Q}=b(v, q)$, and B will be denoted div (notation of distribution of L. Schwartz).

Then the operator $B^{t}: Q \rightarrow V^{\prime}$ is defined by $\left\langle B^{t} q, v\right\rangle_{V^{\prime}, V}=\langle B v, q\rangle_{Q^{\prime}, Q}=b(v, q)$.
The integration by parts, if legitimate, gives

$$
\begin{equation*}
b(\vec{v}, q)=\langle B \vec{v}, q\rangle_{Q^{\prime}, Q}=\left\langle B^{t} q, \vec{v}\right\rangle_{V^{\prime}, V}=-\int_{\Omega} d q(x) \cdot \vec{v}(x) d \Omega+\int_{\Gamma} q(x) \vec{v}(x) \cdot \vec{n}(x) d \Gamma . \tag{13.1}
\end{equation*}
$$

13.1 The divergence operator div: $H^{\text {div }}(\Omega) \rightarrow L^{2}(\Omega)$ is surjective

Here $b(\vec{v}, q)=(\operatorname{div} \vec{v}, q)_{L^{2}}$.
Theorem 13.1 The linear mapping div : $\left\{\begin{aligned} H^{\operatorname{div}}(\Omega) & \rightarrow L^{2}(\Omega) \\ \vec{v} & \rightarrow \operatorname{div} \vec{v},\end{aligned}\right\}$ is continuous and surjective. And the open mapping theorem gives, cf. (8.16),

$$
\begin{equation*}
\exists \beta>0, \forall \vec{v} \in H^{\mathrm{div}}(\Omega), \quad\|\operatorname{div}(\vec{v})\|_{L^{2}(\Omega)} \geq \beta\|\vec{v}\|_{H^{\text {div }} / \operatorname{Ker}(\operatorname{div})} \tag{13.2}
\end{equation*}
$$

or

$$
\begin{equation*}
\exists \beta>0, \forall \vec{v} \in H^{\mathrm{div}}(\Omega), \exists p \in L^{2}(\Omega), \quad(\operatorname{div}(\vec{v}), p)_{L^{2}(\Omega)} \geq \beta\|\vec{v}\|_{H^{\mathrm{div}} / \operatorname{Ker}(\mathrm{div})}\|p\|_{L^{2}(\Omega)} \tag{13.3}
\end{equation*}
$$

also written as the inf-sup inequality $\exists \beta>0, \inf _{v \in H^{\operatorname{div}}(\Omega)} \sup _{p \in L^{2}(\Omega)} \frac{\left|(\operatorname{div} \vec{v}, p)_{L^{2}}\right|}{\|\vec{v}\|_{H^{\operatorname{div}} / \operatorname{Ker}(\operatorname{div})}| | p \|_{L^{2}}} \geq \beta$.

Proof. Since $\|\operatorname{div} \vec{v}\|_{L^{2}} \leq\|\vec{v}\|_{H^{\text {div }}}$, div is continuous. Let $f \in L^{2}(\Omega)$. Let $p \in H_{0}^{1}(\Omega)$ be the solution of $\Delta p_{\vec{\prime}}=f($ Lax-Milgram theorem $) . ~ S o \operatorname{div}(\underset{\operatorname{grad} p}{\operatorname{Lax}})=f \in L^{2}(\Omega)$, thus $\overrightarrow{\operatorname{grad} p} \in H^{\text {div }}(\Omega)$; Then let $\vec{v}=\operatorname{grad} p \in H^{\operatorname{div}}(\Omega)$. Thus $\operatorname{div} \vec{v}=f$, and div is surjective.

And (12.11) gives (13.2), thus (13.3).

13.2 The divergence operator div: $H_{0}^{\operatorname{div}}(\Omega) \rightarrow L_{0}^{2}(\Omega)$ is surjective

Here $b(\vec{v}, q)=(\operatorname{div} \vec{v}, q)_{L^{2}}$.
Theorem 13.2 The linear mapping div : $\left\{\begin{aligned} H_{0}^{\operatorname{div}}(\Omega) & \rightarrow L_{0}^{2}(\Omega) \\ \vec{v} & \rightarrow \operatorname{div} \vec{v},\end{aligned}\right\}$ is continuous and surjective. And the open mapping theorem gives, cf. (8.16),

$$
\begin{equation*}
\exists \beta>0, \forall \vec{v} \in H_{0}^{\mathrm{div}}(\Omega), \quad\|\operatorname{div}(\vec{v})\|_{L^{2}(\Omega)} \geq \beta\|\vec{v}\|_{H_{0}^{\mathrm{div}} / \operatorname{Ker}(\mathrm{div})} \tag{13.4}
\end{equation*}
$$

also written as the inf-sup inequality $\exists \beta>0, \inf _{p \in L_{0}^{2}(\Omega)} \sup _{\vec{v} \in H_{0}^{\text {div }}(\Omega)} \frac{\left|(\operatorname{div} \vec{v}, p)_{L^{2}}\right|}{\|\vec{v}\|_{H_{0}^{\operatorname{div}} / \operatorname{Ker}(\operatorname{div})}| | p \|_{L_{0}^{2}}} \geq \beta$.
Proof. Since $\|\operatorname{div} \vec{v}\|_{L^{2}} \leq\|\vec{v}\|_{H_{0}^{\operatorname{div}(\Omega)}}$, div is continuous. Let $f \in L_{0}^{2}(\Omega)$. Let $p \in H^{1}(\Omega) / \mathbb{R}$ be the solution of $\left(\overrightarrow{\operatorname{grad} p}, \overrightarrow{\operatorname{grad} q)_{L^{2}}}=(f, q)_{L^{2}}\right.$ for all $q \in H^{1}(\Omega) / \mathbb{R}$, cf. the Lax-Milgram Theorem in $H^{1}(\Omega) / \mathbb{R}$ (the hypothesis $f \in L_{0}^{2}(\Omega)$, that is $\left(f, 1_{\Omega}\right)_{L^{2}}=0\left(=\left(\operatorname{grad} p, \operatorname{grad} 1_{\Omega}\right)_{L^{2}}\right)$, is mandatory and is called the
 Thus with $\vec{v}=\operatorname{grad} p$, we have $\vec{v} \in H_{0}^{\operatorname{div}}(\Omega)$ and $\operatorname{div}(\operatorname{grad} p)=f \in L^{2}(\Omega)$, so div is surjective from $H_{0}^{\text {div }}(\Omega)$ to $L^{2}(\Omega)$. So we get (13.4), cf. (12.11).

13.3 The divergence operator div: $L^{2}(\Omega)^{n} \rightarrow H^{-1}(\Omega)$ is surjective

Here $b(\vec{v}, q)=\langle\operatorname{div} \vec{v}, q\rangle_{H^{-1}, H_{0}^{1}}=-\langle\vec{v}, d q\rangle_{L^{2}(\Omega), L^{2}(\Omega)}:=-\int_{\Omega} d q(x) . \vec{v}(x) d \Omega$ (distributions of L. Schwartz) for all $q \in H_{0}^{1}(\Omega)$.

Theorem 13.3 The linear mapping div : $\left\{\begin{aligned} L^{2}(\Omega)^{n} & \rightarrow H^{-1}(\Omega) \\ \vec{v} & \rightarrow \operatorname{div} \vec{v},\end{aligned}\right\}$ is continuous and surjective. And the open mapping theorem gives, cf. (8.16),

$$
\begin{equation*}
\exists \beta>0, \forall \vec{v} \in L^{2}(\Omega), \quad\|\operatorname{div}(\vec{v})\|_{H^{-1}} \geq \beta\|\vec{v}\|_{L^{2}(\Omega) / \operatorname{Ker}(\mathrm{div})} \tag{13.5}
\end{equation*}
$$

also written as the inf-sup inequality $\exists \beta>0, \quad \inf _{p \in H_{0}^{1}(\Omega)} \sup _{\vec{v} \in L^{2}(\Omega)} \frac{|b(\vec{v}, q)|}{\|\vec{v}\|_{L^{2}(\Omega) / \operatorname{Ker}(\operatorname{div})}| | p \|_{H_{0}^{1}}} \geq \beta$.

Proof. $\|\operatorname{div} \vec{u}\|_{H^{-1}}=\sup _{\phi \in H_{0}^{1}(\Omega)} \frac{\mid\langle\operatorname{div} \vec{u}, \phi \mid\rangle}{\|\phi\|_{H_{0}^{1}}}=\sup _{\phi \in H_{0}^{1}(\Omega)} \frac{\mid(\vec{u}, \operatorname{grad} \phi)_{L^{2}}}{\|\phi\|_{H_{0}^{1}}} \leq\|\vec{u}\|_{L^{2}}\left(\right.$ Cauchy-Schwarz in $\left.L^{2}(\Omega)\right)$, therefore div is continuous. Let $\ell \in H^{-1}(\Omega)$. Thus there exists $f \in L^{2}(\Omega)$ and $\vec{u} \in L^{2}(\Omega)^{n}$ s.t. $\ell=f+\operatorname{div} \vec{u}$, cf. (9.24). Let $\vec{w} \in H^{\operatorname{div}}(\Omega)$ s.t. $\operatorname{div} \vec{w}=f$, cf. thm. 13.1. So $\ell=\operatorname{div}(\vec{w}+\vec{u})$ with $\vec{u}+\vec{w} \in L^{2}(\Omega)^{n}$, and div is continuous. So we get (13.5), cf. (12.11).

13.4 The divergence operator div: $H_{0}^{1}(\Omega)^{n} \rightarrow L_{0}^{2}(\Omega)$ is surjective

Here $b(\vec{v}, q)=(\operatorname{div} \vec{v}, q)_{L^{2}}$.
Theorem 13.4 The linear mapping

$$
\operatorname{div}:\left\{\begin{align*}
H_{0}^{1}(\Omega)^{n} & \rightarrow L_{0}^{2}(\Omega) \tag{13.6}\\
\vec{v} & \rightarrow \operatorname{div} \vec{v},
\end{align*}\right\} \quad \text { is continuous and surjective. }
$$

And the open mapping theorem gives, cf. (8.16),

$$
\begin{equation*}
\exists \beta>0, \forall \vec{v} \in H_{0}^{1}(\Omega)^{n}, \quad\|\operatorname{div}(\vec{v})\|_{L_{0}^{2}} \geq \beta\|\vec{v}\|_{H_{0}^{1}(\Omega)^{n} / \operatorname{Ker}(\operatorname{div})} \tag{13.7}
\end{equation*}
$$

also written as the inf-sup inequality $\exists \beta>0, \quad \inf _{p \in L_{0}^{2}(\Omega)} \sup _{\vec{v} \in H_{0}^{1}(\Omega)^{n}} \frac{\left|(\operatorname{div} \vec{v}, q)_{L^{2}}\right|}{\left.\|\vec{v}\|_{H_{0}^{1} / \operatorname{Ker}(\operatorname{div})}| | p \|_{L_{0}^{2}}\right)_{L^{2}}} \geq \beta$.

Proof. div $=\operatorname{grad}^{\prime}: H_{0}^{1}(\Omega) \rightarrow L_{0}^{2}(\Omega)$ is the dual operator of the gradient operator grad $: L^{2}(\Omega) \rightarrow$ $H^{-1}(\Omega)^{n}$. Since the range of the grad is closed, cf. theorem 10.1, the range of the div operator is closed, cf. the closed range theorem 11.2. (Remark: For any $\vec{v} \in H_{0}^{1}(\Omega)^{n}$ we have $\int_{\Omega} \operatorname{div} \vec{v} d \Omega=\int_{\Gamma} \vec{v} \cdot \vec{n} d \Gamma=0$, so $\left.\operatorname{Im}(\operatorname{div}) \subset L_{0}^{2}(\Omega).\right)$

With div : $H_{0}^{1}(\Omega)^{n} \rightarrow L^{2}(\Omega)$ we have $\operatorname{Ker}(\operatorname{div})=\left\{\vec{v} \in H_{0}^{1}(\Omega)^{n}: \operatorname{div} \vec{v}=0\right\}$, and

$$
\begin{equation*}
\operatorname{Ker}(\operatorname{div})^{\perp_{H_{0}^{1}}}:=\left\{\vec{v} \in H_{0}^{1}(\Omega)^{n}:(\vec{v}, \vec{w})_{H_{0}^{1}}=0, \forall \vec{w} \in H_{0}^{1}(\Omega)^{n}, \operatorname{div} \vec{w}=0\right\} \tag{13.8}
\end{equation*}
$$

Let $\Delta^{-1}:\left\{\begin{aligned} H^{-1}(\Omega) & \rightarrow H_{0}^{1}(\Omega) \\ f & \rightarrow u=\Delta^{-1} f\end{aligned}\right\}$, that is, $u \in H_{0}^{1}(\Omega)$ solves the Dirichlet problem $\Delta u=f$.

Corollary 13.5

$$
\begin{equation*}
\operatorname{Ker}(\operatorname{div})^{\perp_{H_{0}^{1}}}=\left\{\vec{v}=\Delta^{-1}(\operatorname{grad} q), q \in L^{2}(\Omega)\right\} \quad\left(=\Delta^{-1}\left(\operatorname{grad}\left(L^{2}(\Omega)\right)\right)\right) \tag{13.9}
\end{equation*}
$$

that is $\vec{v} \in \operatorname{Ker}(\text { div })^{\perp_{H_{0}^{1}}}$ iff $\Delta \vec{v}$ derives from a potential $q \in L^{2}(\Omega)$.
And $H_{0}^{1}(\Omega)^{n}=\operatorname{Ker}(\operatorname{div}) \oplus^{\perp_{H_{0}^{1}}} \operatorname{Ker}(\operatorname{div})^{\perp_{H_{0}^{1}}}$ give a decomposition of $H_{0}^{1}(\Omega)^{n}$.

Proof. Let $A:=\left\{\vec{v} \in H_{0}^{1}(\Omega)^{n}: \vec{v}=\Delta^{-1}(\underset{\operatorname{grad}}{ } q), q \in L^{2}(\Omega)\right\}$. So $\vec{v} \in A$ iff $\vec{v} \in H_{0}^{1}(\Omega)^{n}$ and $\exists q \in L^{2}(\Omega)$, $\Delta \vec{v}=\operatorname{grad} q$, i.e. $(\vec{v}, \vec{w})_{H_{0}^{1}}=(\operatorname{grad} \vec{v}, \operatorname{grad} \vec{w})_{L^{2}}=(q, \operatorname{div} \vec{w})_{L^{2}}$ for all $\vec{w} \in H_{0}^{1}(\Omega)^{n}$.

- $A \subset \operatorname{Ker}(\operatorname{div})^{\perp_{H_{0}^{1}}}:$ Let $\vec{v} \in A$. Thus $\exists q \in L^{2}(\Omega)$ s.t. $(\vec{v}, \vec{w})_{H_{0}^{1}}=(q, \operatorname{div} \vec{w})_{L^{2}}$ for all $\vec{w} \in H_{0}^{1}(\Omega)^{n}$. Thus $(\vec{v}, \vec{w})_{H_{0}^{1}}=0$ for all $\vec{w} \in \operatorname{Ker}($ div $)$, thus $\vec{v} \in \operatorname{Ker}(\text { div })^{\perp_{H_{0}^{1}}}$.
- $\operatorname{Ker}(\operatorname{div})^{\perp_{H_{0}^{1}}} \subset A$: Let $\vec{v} \in \operatorname{Ker}(\operatorname{div})^{\perp_{H_{0}^{1}}}$. We look for $q \in L_{0}^{2}(\Omega)$ s.t. $\Delta \vec{v}=\operatorname{grad} q$: thus we look for $q \in L_{0}^{2}(\Omega)$ s.t. $\Delta \vec{v}=\operatorname{grad} q$, that is $(q, \operatorname{div} \vec{z})_{L^{2}}=-(\Delta \vec{v}, \vec{z})_{H^{-1}, H_{0}^{1}}$ for all $\vec{z} \in H_{0}^{1}(\Omega)$.

The operator $B=\operatorname{div}: \vec{z} \in H_{0}^{1}(\Omega) / \operatorname{Ker}(\operatorname{div}) \rightarrow \operatorname{div} \vec{z} \in L_{0}^{2}(\Omega)$ is linear continuous bijective, with $\|\operatorname{div} \vec{z}\|_{L_{0}^{2}(\Omega)} \leq\|B\|\|\vec{z}\|_{H_{0}^{1}(\Omega) / \operatorname{Ker}(\operatorname{div})}$.

Its inverse $B^{-1}: \psi \in L_{0}^{2}(\Omega) \rightarrow B^{-1} \psi \in H_{0}^{1}(\Omega) / \operatorname{Ker}(\operatorname{div})$ is linear continuous bijective, with $\left\|B^{-1} \psi\right\|_{H_{0}^{1}(\Omega) / \operatorname{Ker}(\mathrm{div})} \leq\left\|B^{-1}\right\|\|\psi\|_{L_{0}^{2}}$.

Let $a(\cdot, \cdot):(q, \psi) \in L_{0}^{2}(\Omega) \times L_{0}^{2}(\Omega) \rightarrow a(q, \psi)=(q, \psi)_{L^{2}}: a(\cdot, \cdot)$ is trivially bilinear continuous coercive in $\left(L^{2}(\Omega),(\cdot, \cdot)_{L^{2}}\right)$.

Let $\ell: \psi \in L_{0}^{2}(\Omega) \rightarrow \ell(\psi)=-\left(\Delta \vec{v}, B^{-1} \psi\right)_{H^{-1}, H_{0}^{1}}=(\operatorname{grad} \vec{v}, \operatorname{grad} \psi)_{L^{2}} \in \mathbb{R}$: ℓ is trivially linear, and is continuous since $|\ell(\psi)| \leq\|\Delta \vec{v}\|_{H^{-1}}\left\|B^{-1} \psi\right\|_{L^{2}} \leq\|\Delta \vec{v}\|_{H^{-1}}\left\|B^{-1}\right\|\|\psi\|_{L_{0}^{2}}$.

Thus the Lax-Milgram theorem gives the existence of q. And the first point shows that if $\Delta \vec{v}=\operatorname{grad} q$ then $\vec{v} \perp_{H_{0}^{1}} \operatorname{Ker}($ div $)$.

A Singular value decomposition (SVD)

We want to estimate the β inf-sup constant, cf. (12.12). Consider a $m * n$ rectangular matrix B. We look for its singular value σ_{i}, that is, we look for a $m * n$ "diagonal" matrix σ, i.e. e.g. in the case $m<n$,

$$
\Sigma=\operatorname{diag}_{m, n}\left(\sigma_{1}, \ldots \sigma_{p}\right)=\left(\begin{array}{cccccccc}
\sigma_{1} & 0 & \ldots & & 0 & 0 & \ldots & 0 \\
0 & \sigma_{1} & 0 & & 0 & \vdots & & \vdots \\
\vdots & & \ddots & \ddots & & & & \\
& & & & 0 & & & \\
0 & & \ldots & & \sigma_{p} & 0 & \ldots & 0
\end{array}\right)
$$

and for two matrices $U m * m$ and $V n * n$ s.t.

$$
\Sigma=U^{T} \cdot B \cdot V
$$

with U^{T} the U transposed matrix.
Proposition A. 1 Let B be a $m * n$ real matrix. If λ_{i} is an eigenvalue of the $n * n$ matrix B^{T}. B, then λ_{i} is positive and is an eigenvalue of the $m * m$ matrix $B . B^{T}$.

If λ_{i} is an eigenvalue of the $m * m$ matrix $B \cdot B^{T}$, then λ_{i} is positive and is an eigenvalue of the $n * n$ matrix B^{T}. B.

Let $\sigma_{i}=\sqrt{\lambda_{i}}$. Let $\left(\vec{v}_{i}\right)_{1, \ldots, n}$ be an orthonormal basis of eigenvectors of $B^{T} . B$ associated to the eigenvalues λ_{i}, and let V be the (orthonormal) matrix whose j-th column is \vec{v}_{j}. Let $\left(\vec{u}_{i}\right)_{1, \ldots, n}$ be an orthonormal basis of eigenvectors of $B . B^{T}$ associated to the eigenvalues λ_{i}, and let U be the (orthonormal) matrix whose j-th column is \vec{u}_{j}. And let $\Sigma=\operatorname{diag}_{m, n}\left(\sigma_{1}, \ldots, \sigma_{p}\right)$ where $p=\min (m, n)$. Then the singular value decomposition of B is

$$
\begin{equation*}
\Sigma=U^{T} \cdot B \cdot V, \quad \text { i.e. } \quad B=U \cdot \Sigma^{T} . V^{T} . \tag{A.1}
\end{equation*}
$$

Thus, if $\operatorname{rank}(B)=r$ and $\sigma_{1} \geq \ldots \geq \sigma_{r}>0$ (and $\sigma_{i}=0$ pour $i>r$), then

$$
\begin{equation*}
B=\sum_{i=1}^{r} \sigma_{i} \vec{u}_{i} \cdot \vec{v}_{i}^{T} \tag{A.2}
\end{equation*}
$$

Moreover, $\binom{\vec{u}_{j}}{\vec{v}_{j}} \in \mathbb{R}^{m+n}, j=1, \ldots, p$, is an eigenvector of $\left(\begin{array}{cc}0 & B \\ B^{T} & 0\end{array}\right)$ associated to the eigenvalue σ_{j}.
Proof. $B^{T} \cdot B$ is symmetric real, thus diagonalisable. Moreover $B^{T} \cdot B$ is non negative since $\vec{x}^{T} \cdot\left(B^{T} \cdot B\right) \cdot \vec{x}=$ $(B \cdot \vec{x})^{T} \cdot(B \cdot \vec{x})=\|B \cdot \vec{x}\|^{2} \geq 0$. Let $\lambda_{1}, \ldots, \lambda_{n}$ be its eigenvalues, and $\lambda_{1} \geq \ldots \geq \lambda_{n}(\geq 0)$, even if you have to renumber them. Let \vec{v}_{i} be associated eigenvectors constituting an orthonormal basis in \mathbb{R}^{n}, and let V be the orthonormal matrix which columns are made of the \vec{v}_{i} 's. Suppose $(B) \leq p=\min (m, n)$, so that $\operatorname{rank}\left(B^{T} . B\right) \leq p$ and $\lambda_{p+1}=\ldots=\lambda_{n}=0$. Then

$$
\operatorname{diag}_{n, n}\left(\lambda_{1}, \ldots, \lambda_{p}, 0, \ldots, 0\right)=V^{T} \cdot B^{T} . B \cdot V \quad n * n \text { matrix. }
$$

Same steps for $B . B^{T}$ with eigenvalues $\mu_{1} \geq . . \geq \mu_{m} \geq 0$ and the associated orthonormal matrix U :

$$
\operatorname{diag}_{m, m}\left(\mu_{1}, \ldots, \mu_{p}, 0, \ldots, 0\right)=U^{T} \cdot B \cdot B^{T} . U \quad m * m \text { matrix }
$$

With $B \cdot B^{T} \cdot \vec{u}_{i}=\mu_{i} \vec{u}_{i}$ we get $B^{T} \cdot B \cdot B^{T} \cdot \vec{u}_{i}=\mu_{i} B^{T} \cdot \vec{u}_{i}$, thus $B^{T} \cdot \vec{u}_{i}$ is an eigenvector for $B^{T} \cdot B$ associated to the eigenvalue μ_{i}. And $B^{T} \cdot B \cdot \vec{v}_{j}=\lambda_{j} \vec{v}_{j}$ tells that μ_{i} is one the the λ_{j}.

Remark: If $\Sigma=\operatorname{diag}_{m, n}\left(\sigma_{1}, \ldots, \sigma_{p}\right)=U^{T} . B \cdot V$ then $\Sigma \cdot \Sigma^{T}=\operatorname{diag}_{m, m}\left(\sigma_{1}^{2}, \ldots, \sigma_{p}^{2}\right)=\left(U^{T} \cdot B \cdot V\right) \cdot\left(U^{T} \cdot B \cdot V\right)^{T}=$ $U^{T} .\left(B \cdot B^{T}\right) \cdot U$, and the $\lambda_{i}=\sigma_{i}^{2}$ are indeed the eigenvalues of $B \cdot B^{T}$ associated to the eigenvectors of U. Idem for $B^{T} . B$. And the matrices U and V are the matrices made of the column vectors \vec{u}_{j} and \vec{v}_{j}.

Existence of the decomposition: Let $\lambda_{i}, i=1, \ldots, n$, be the eigenvalues of B^{T}. B. Suppose $\lambda_{1} \geq \ldots \geq$ $\lambda_{r}>0$, and $\lambda_{r+1}=\ldots=\lambda_{n}=0$. Let $\sigma_{j}=\sqrt{\lambda_{j}}$.

Then let

$$
\begin{equation*}
\vec{u}_{j}=\frac{B \cdot \vec{v}_{j}}{\sigma_{j}} \in \mathbb{R}^{m}, \quad 1 \leq j \leq r . \tag{A.3}
\end{equation*}
$$

The \vec{u}_{j} are (orthonormal) eigenvectors of $B \cdot B^{T}$: Indeed $\left(B \cdot B^{T}\right) \cdot \vec{u}_{j}=\frac{B \cdot\left(B^{T} \cdot B\right) \cdot \vec{v}_{j}}{\sigma_{j}}=\frac{\lambda_{j} B \cdot \vec{v}_{j}}{\sigma_{j}}=\lambda_{j} \vec{u}_{j}$. And $\vec{u}_{i}^{T} \cdot \vec{u}_{j}=\frac{\vec{v}_{i}^{T} \cdot\left(B^{T} \cdot B \vec{v}_{j}\right)}{\sigma_{i} \sigma_{j}}=\lambda_{j} \frac{\vec{v}_{i}^{T} \cdot \vec{v}_{j}}{\sigma_{i} \sigma_{j}}=\delta_{i j}$, and the \vec{u}_{j} are the normalized vectors $B \cdot \vec{v}_{j}$. We then complete $\left(\vec{u}_{j}\right)_{j=1, . ., r}$ to get an orthonormal basis in \mathbb{R}^{m} (e.g. with Gram-Schmidt method). Let U be the $m * m$ matrix made of the columns vector \vec{u}_{j}.

Let $\Sigma=U^{T}$.B.V. So $\left[\Sigma_{i j}\right]=\left[\vec{u}_{i}^{T} \cdot B \cdot \vec{v}_{j}\right]=\left[\sigma_{j} \vec{u}_{i}^{T} \cdot \vec{u}_{j}\right]=\left[\sigma_{j} \delta_{i j}\right]$ if $j \leq r$, and vanishes if $j>r$ (since $B \cdot \vec{v}_{j}=0$). Thus (A.1). And then (A.2).

And $B \vec{v}_{j}=\sigma_{j} \vec{u}_{j}$ for $j \leq r$, cf. (A.3), thus $B^{T} \cdot B \cdot \vec{v}_{j}=\sigma_{j} B^{T} \cdot \vec{u}_{j}=\lambda_{j} \vec{v}_{j}$ for $j \leq r$, so $B^{T} \cdot \vec{u}_{j}=\sigma_{j} \vec{v}_{j}$ for $j \leq r$. And if $j>r$ then $B^{T} \cdot \vec{u}_{j}=0$ since $\vec{u}_{j} \in(\operatorname{Im}(B))^{\perp}=\operatorname{Ker}\left(B^{T}\right)$. Thus $\left(\begin{array}{cc}0 & B \\ B^{T} & 0\end{array}\right) \cdot\binom{\vec{u}_{j}}{\vec{v}_{j}}=$ $\sigma_{j}\binom{\vec{u}_{j}}{\vec{v}_{j}}$.

And if B is a symmetric positive real matrix, then $B^{T} \cdot B=B^{2}=B \cdot B^{T}$, so $B^{T} \cdot B=B \cdot B^{T}$; With $B \geq 0$ thus its eigenvalues are non negative, $\sigma_{i}=+\sqrt{\lambda_{i}}$, thus the σ_{i} are the singular values.

Remark A. 2 If $m>n$ and $j \geq m+1$ then the \vec{u}_{j} are useless, and U is computed as a $m * n$ matrix (and U^{T} as a $n * m$ matrix). And Σ is then a $n * n$ matrix. This method is called the "Thin SVD".

Corollary A. $3 \operatorname{Rang}(B)=r, \operatorname{Ker}(B)=\operatorname{Vect}\left\{\vec{v}_{r+1}, \ldots \vec{v}_{n}\right\}$ and $\operatorname{Im}(B)=\operatorname{Vect}\left\{\vec{u}_{1}, \ldots \vec{u}_{r}\right\}$.
Proof. Apply (A.2).
Corollary A. 4 Let $k \leq r-1$ and $B_{k}=\sum_{i=1}^{k} \sigma_{i} \vec{u}_{i} \cdot \vec{v}_{i}^{T}$. Then

$$
\min _{Z: \operatorname{Rang} Z=k}\|B-Z\|=\sigma_{k+1}=\left\|B-B_{k}\right\|,
$$

where $\|Z\|=\sup _{\vec{x} \neq 0} \frac{\|Z \cdot \vec{x}\|_{\mathbb{R}} m}{\|\vec{x}\|_{\mathbb{R}^{n}}}$ is the usual norm.
This gives a numerical measure of the rank of B : If σ_{k+1} is of the precision order of the computer, then the numerical rank o B is k.

Proof. We get $U^{T} . B_{k} . V=\operatorname{diag}_{m, n}\left(\sigma_{1}, \ldots, \sigma_{k}, 0, \ldots\right)$ (easy check).
Thus $U^{T} .\left(B-B_{k}\right) \cdot V=\operatorname{diag}_{m, n}\left(0, \ldots, 0, \sigma_{k+1}, \ldots, \sigma_{r}, 0, \ldots\right)$, thus $\left\|B-B_{k}\right\|=\sigma_{k+1}$, and in particular $\min _{\operatorname{Rang} Z=k}\|B-Z\| \leq \sigma_{k+1}$.
Let Z be a $m * n$ matrix with rank k. Thus $\operatorname{dim} \operatorname{Ker} Z=n-k$. Let $E=\operatorname{Ker} Z \bigcap \operatorname{Vect}\left\{\vec{v}_{1}, \ldots \vec{v}_{k+1}\right\}$. So $\operatorname{dim}(E) \geq 1$ (intersection of a dimension $n-k$ space with a dimension $k+1$ space in \mathbb{R}^{n}).

Let $\vec{x} \in E$ s.t. $\|\vec{x}\|_{\mathbb{R}^{n}}=1$; Then $\|(B-Z) \cdot \vec{x}\|_{\mathbb{R}^{m}}^{2}=\|B \cdot \vec{x}\|_{\mathbb{R}^{m}}^{2}=\left\|\sum_{i=1}^{k+1} \sigma_{i}\left(\vec{v}_{i}^{T} \cdot \vec{x}\right) \vec{u}_{i}\right\|^{2}=\sum_{i=1}^{k+1} \sigma_{i}^{2}\left(\vec{v}_{i}^{T} \cdot \vec{x}\right)^{2}$, the \vec{u}_{i} being orthonormal vectors. Thus $\|(B-Z) \cdot \vec{x}\|_{\mathbb{R}^{m}}^{2} \geq \sigma_{k+1} \sum_{i=1}^{k+1}\left(\vec{v}_{i}^{T} \cdot \vec{x}\right)^{2}=\sigma_{k+1}\|\vec{x}\|^{2}=\sigma_{k+1}$. So $\min _{\operatorname{Rang} Z=k}\|B-Z\| \geq \sigma_{k+1}$.

B Application: The discrete inf-sup condition

Example of $\operatorname{div} \vec{u}=0$, corresponding to B a rectangular $m * n$ matrix (computation of $b\left(\vec{v}_{h}, q_{h}\right)=0$).
Here B^{T} stands for $\left[B_{h}\right]$, cf. (1.12), and we compute the singular values of B^{T}, i.e. the eigenvalues of $\left(\begin{array}{cc}0 & B^{T} \\ B & 0\end{array}\right)$. We get:
Proposition B. 1 Let $\sigma_{r}>0$ be the smallest positive eigenvalue of B. We have (value of the inf-sup constant)

$$
\inf _{q_{h} \in Q_{h}} \sup _{v_{h} \in V_{h}} \frac{b\left(v_{h}, q_{h}\right)}{\left\|v_{h}\right\|_{V}\left\|q_{h}\right\|_{Q}}=\sigma_{r}
$$

Proof. $B=\sum_{i=1}^{r} \sigma_{i} \vec{u}_{i} \cdot \vec{v}_{i}^{T}$ gives $B \cdot \vec{x}=\sum_{i=1}^{r} \sigma_{i}\left(\vec{v}_{i}^{T} \cdot \vec{x}\right) \vec{u}_{i}$, so $\vec{y}^{T} \cdot B \cdot \vec{x}=\sum_{i=1}^{r} \sigma_{i}\left(\vec{v}_{i}^{T} \cdot \vec{x}\right)\left(\vec{y}^{T} \cdot \vec{u}_{i}\right)$.
Let $\vec{x}=\sum_{j=1}^{n} x^{j} \vec{v}_{j}$ and $\vec{y}=\sum_{k=1}^{n} y^{k} \vec{u}_{k}$. Thus $\vec{y}^{T} . B \cdot \vec{x}=\sum_{i=1}^{r} \sigma_{i} x^{i} y^{i}$.
Thus for $\|x\|=1$, and \vec{y} being fixed with $\|\vec{y}\|=1$, the sup is given by $x^{i}=\frac{\sigma_{i} y^{i}}{\left(\sum_{i} \sigma_{i}^{2} y_{i}^{2}\right)^{\frac{1}{2}}}$, and gives $\vec{y}^{T} \cdot B \cdot \vec{x}=\frac{1}{\left(\sum_{i} \sigma_{i}^{2} y_{i}^{2}\right)^{\frac{1}{2}}} \sum_{i=1}^{r} \sigma_{i}^{2} y_{i}^{2}=\left(\sum_{i} \sigma_{i}^{2} y_{i}^{2}\right)^{\frac{1}{2}}$. Thus the inf for \vec{y} is given with $\vec{y}=\vec{u}_{r}$, and gives $\vec{y}^{T} \cdot B \cdot \vec{x}=\sigma_{r}$.

References

1 Arnold D., Brezzi F., Fortin M.: A stable finite element for the Stokes equations. Calcolo, 21, pp. 337-344 (1984).

2 Babuška I.: The Finite Element Method with Lagrangian Multipliers. Numer. Math. 20, 179-192 (1973).

3 Barbosa H., Hughes T.: The Finite Element Method with Lagrange Multipliers on the Boundary: circumventing the Babuška-Brezzi Condition. Comp. Meths. in Appl. Mech. and Eng., 85, 109-128, 1991.

4 Bercovier M., Pironneau O.: Error estimates for finite element method solution of the Stokes problem in the primitive variables. Numer. Math., 33, pp. 211-224 (1977).

5 Brenner S.C., Scott L.R.: The Mathematical Theory of Finite Element Methods. Text in Applied Mathematics, Springer-Verlag.

6 Brézis H. : Analyse fonctionnelle, théorie et applications. Collection mathématiques appliquées pour la maîtrise, Masson (1983).

7 Brezzi F.: On the uniqueness, existence and approximation of saddle point problem arising from lagrangian multipliers. RAIRO Anal. Numer, 8, 129-151 (1974).

8 Brezzi F., Fortin M.: Mixed and Hybrid Finite Element Methods. Springer-Verlag, 1991.
9 Brezzi F., Pitkäranta J.: On the stabilization of finite element approximations of the Stokes equations. Efficient Solutions of Elliptic Systems, Notes on Numerical Fluid Mechanics, 10, Hackbush ed. (1984).

10 Chapelle D.: Une formulation mixte de plaques où l'effort tranchant est approché dans son espace naturel. INRIA, rapport de recherche 2248, novembre 1993.

11 Ciarlet P.G.: Introduction à l'analyse numérique matricielle et à l'optimisation. Masson, 1990.
12 Ciarlet P.G.: The Finite Element Method for Elliptic Problems. North-Holland (1977).
13 Crouzeix M., Raviart P.A.: Conforming and non-conforming finite element methods for solving the stationary Stokes equations. R.A.I.R.O. Anal. Numer., 7, pp. 33-76 (1973).

14 Douglas J. Jr, Wang J.: An absolutely stabilized finite element method for the Stokes problem. Math. Comp. 52, pp. 495-508, 1989.

15 Ern A., Guermond J.L.: Eléments finis : théorie, applications, mise en oeuvre. Mathématiques \& Applications 36, Springer 2002.

16 Fortin M.: Utilisation de la méthode des éléments finis en mécanique des fluides. Calcalo, 12, pp. 405-441 (1975).

17 Fortin M.: An analysis of the convergence of mixed finite element methods. RAIRO analyse numérique, 11, n ${ }^{\circ} 4$, pp. 341-354 (1977).

18 Girault, V., Raviart, P. A.: Finite Element Methods for Navier-Stokes Equations. Springer-Verlag (1986)

19 Golub H.G., Van Loan C.F.: Matrix Computations. John Hopkins, 3rd edition, 1996.
20 Goulaouic C.: Analyse fonctionnelle et calcul différentiel. Ed. de l'Ecole Polytechnique, 1982.
21 Goulaouic C., Meyer Y.: Analyse fonctionnelle et calcul différentiel. Ed. de l'Ecole Polytechnique, 1984.

22 Hughes T.J.R., Franca L.P., Balestra M.: A new finite element formulation for computational fluid dynamics: V. Circumventing the Babuška-Brezzi condition: A stable Petrov-Galerkin formulation of the Stokes problem accomodating equal-order interpolations. C.M.A.M.E. 59, pp. 85-99, 1986.

23 Leborgne G.: An Optimally Consistent Stabilization of the Inf-Sup Condition. Numer. Math., 91, pp. 35-56 (2002).

24 Lions J.L., Magenes E.: Problèmes aux limites non homogènes et applications, Vol 1. Dunod (1968).
25 Nédélec J.C. : Méthode des éléments finis. Mathématiques et applications n ${ }^{\circ}$ 7. Ellipses (1991).
26 Nitsche J.: Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. Abh. Math. Sem. Univ. Hamburg, 36:915, 1970/1971.

27 Pitkäranta J.: Boundary Subspaces for the Finite Element Method with Lagrange Multipliers. Numer. Math. 33, pp. 273-189, 1979.

28 Raviart P.A., Thomas J.M. : Introduction à l'analyse numérique des équations aux dérivées partielles. Collection mathématiques appliquées pour la maîtrise, Masson (1983).

29 Schwartz L.: Méthodes mathématiques pour les sciences physiques. Collection enseignement des sciences, Hermann (1993).

30 Schweizer B.: www.mathematik.uni-dortmund.de/lsi/schweizer/Preprints/perfectcondringspreprint.pdf

31 Stenberg R.: On some techniques for approximating boundary conditions in the finite element method. Journal of Computational and Applied Mathematics 63 (1995) 139-148. Et http://math.tkk.fi/~rstenber/publications.htm.
32 Strang G.: Linear Algebra and its Applications. Harcourt Brace \& Company, 3rd edition (1988).
33 Strang G., Fix J.F.: An Analysis of the Finite Element Method. Wellesley-Cambridge Press (1973).
34 Yosida K.: Fonctional Analysis. Sixth Edition, Springer-Verlag 1980.

