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Abstrat: Minimization problems of Mindlin{Reissner type

treated by the �nite element method an exhibit a loking phe-

nomenon due to inompatible hoie of the disrete spaes involved.

Here suh an inompatible hoie is onsidered for whih an analy-

sis of an origin of the loking is performed. We modify the disrete

equations in onsequene, and these equations are then proved to

be unloked. Then a onvergene proof is given. Numerial simu-

lations of a Mindlin{Reissner type problem are proposed with the

only use of P

1

-ontinuous �nite elements and give the expeted un-

loked result. The numerial added ost amounts mainly to invert

a diagonal matrix in the ase of P

1

�nite elements.

1 Introdution

The motivation of this study was to try to use P

1

-ontinuous �-

nite elements: These elements are easy to ompute and they are

proposed in any �nite element odes. Here we shall use the Mat-

lab PDE Toolbox where we do not have the hoie of the �nite

elements: The P

1

-ontinuous �nite elements are the only �nite el-

ements proposed. These elements are however well-known to yield

a loked solution for Mindlin{Reissner type problem if no ure is

introdued. In this paper we propose a new modi�ation of the

disrete problem to irumvent this problem.



The approah presented di�ers from more usual approahes that

try to �nd adapted �nite elements to a given disrete problem: See

for example Arnold [1℄ for the analysis of the 1-D problem (Tim-

oshenko beam), Brezzi and Fortin [8℄ [9℄ and Brezzi, Fortin and

Sternberg [10℄ for the presentation and ideas of ures, Arnold and

Brezzi [2℄ for a new idea that extrats from the start oerivity in

both variables, Chenais and Paumier [14℄ for a hoie of unloked

�nite elements, Arnold and Falk [3℄ for analysis of some elements

and a point on some new methods, Chapelle and Stenberg [13℄ for

what they all \a slight modi�ation" of the disrete equations,

Capatina-Papaghiu [12℄ for the use of non onforming �nite ele-

ments.

We also refer to Brezzi and Bathe [7℄ for an introdution to

the loking phenomenon and its relation to the inf-sup ondition,

to Babuska and Suri [5℄ for the omputation of the degree of the

loking.

The starting point of this paper is di�erent: we start from a

hoie of (onforming) �nite elements that are known to give a

loked solution, and it is a modi�ation of the disrete problem

(addition of a new term) that is onsidered. This yields an added

numerial ost that however will be negligeable when P

1

�nite ele-

ments are used sine this will introdue a diagonal matrix inverted

at (almost) no ost.

In Setion 2, Mindlin{Reissner type problems are introdued.

Setion 3 deals with a generalized problem and we ompare the

respetive oerivity onstants of the ontinuous and disrete prob-

lem, and then orret the disrete problem. In Setion 4 the proof

of the unloking for the ured equations is performed. In Setion 5

omputations of errors are proposed. And in the last Setion, nu-

merial results are shown.

2 The Mindlin-Reissner equations

2.1 Notation

Let m be an integer � 1 and 
 be a bounded regular domain in

R

m

whih boundary is denoted �.

We equip R

m

with its anonial salar produt (�; �)

R

m

. Thus

for any di�erentiable funtion f : 
 ! R we shall represent its

di�erential df(x) by its gradient gradf(x) de�ned by df(x)(v) =

(gradf(x); v)

R

m

for all v 2 R

m

.

Then we onsider the anonial basis or R

m

, and any veteur

v 2 R

m

will be given by its omponents v

i

in this basis, for i =



1; :::; n. In partiular, gradf(x) is represented by the transpose of

the line matrix (

�f

�x

1

(x); :::;

�f

�x

n

(x)), for any x 2 
.

We denote by L

2

(
) the spae of measurable funtions that

are square integrables on 
, then by H

1

(
) = fv 2 L

2

(
) :

gradv 2 L

2

(
)

m

g, then by H

1

0

(
) = fv 2 H

1

(
) : v

j�

= 0g. The

salar produt in L

2

(
) will be denoted (u; v)

L

2

=

R




u(x)v(x) dx.

In L

2

(
)

m

, we shall use the salar produt:

(u; v)

L

2

=

Z




(u(x); v(x))

R

m

dx =

Z




m

X

i=1

u

i

(x)v

i

(x) dx

where u = (u

i

)

i=1;:::;m

in the anonial basis. And in L

2

(
)

m

2

, we

shall use the salar produt:

(A;B)

L

2

=

Z




m

X

i;j=1

A

ij

(x)B

ij

(x) dx

with the generi matrix notation A = (A

ij

)

i;j=1;:::;m

: This last no-

tation is used for \(gradu; gradv)

L

2

" where gradu is represented by

the matrix [

�u

i

�x

j

℄

i;j=1;:::;m

.

The assoiated norm in L

2

(
) will be denoted jjvjj

L

2

= (v; v)

1

2

L

2

for any v 2 L

2

(
) or v 2 L

2

(
)

m

or v 2 L

2

(
)

m

2

. The norm used

in H

1

0

(
) or in H

1

0

(
)

m

is jjvjj

H

1

0

= jjgradvjj

L

2

, where v is a salar

or vetor funtion.

In H

1

0

(
), we shall use the Poinar�e's inequality (sine 
 is

bounded):

9� > 0; 8u 2 H

1

0

(
); jjgradujj

2

L

2

� �jjujj

2

L

2

: (2.1)

For the numerial omputation, we shall onsider a �nite ele-

ment triangulation of 
 and denote by P

k

the �nite elements for

whih the assoiated funtions are ontinuous over 
 and poly-

nomial of degree k on eah triangle. And for a vetor funtion

v = (v

i

)

i=1;:::;m

suh that v

i

2 P

k

for any i = 1; :::; m, we also refer

to v as being P

k

.

And we onsider onforming approximations: if the unknown is

looked for in a spae V , its omputed approximation is looked for

in a �nite dimensional subspae V

h

� V .

2.2 The Mindlin-Reissner problem

The usual Mindlin{Reissner plate model with Dirihlet boundary

onditions reads: Find (u; p) 2 (H

1

0

(
))

2

�H

1

0

(
) suh that:

M(u; p) = inf

(v;q)2(H

1

0

(
))

2

�H

1

0

(
)

M(v; q); (2.2)



where:

M(v; q) =

1

2

a(v; v) +

�

2

jjv � gradqjj

2

L

2

� (f; q)

L

2

; (2.3)

and:

a(v; v) =

E

12(1��

2

)

Z




h

(

�v

1

�x

+�

�v

2

�y

)

�v

1

�x

+ (�

�v

1

�x

+

�v

2

�y

)

�v

2

�y

+

(1��)

2

(

�v

1

�y

+

�v

2

�x

)

2

i

dx dy:

E is the Young modulus, � the Poisson oeÆient. In (2.2) and (2.3)

u is the rotation vetor, p the transverse displaement, f the tran-

verse load, � =

kE

2(1+�)t

2

where k is a shear orretion fator and t is

the thikness of the plate. And as the thikness vanishes, � in-

reases to in�nity. The value of E and � are suh that a(�; �)

is a salar produt on H

1

0

(
)

2

equivalent to the H

1

0

(
)

2

usual

(u; v)

H

1

0

= (gradu; gradv)

L

2

salar produt.

The interpretation of this Mindlin{Reissner plate model is las-

sial and an be found for example in Brezzi and Fortin [9℄ and

referenes therein.

In this paper we onsider in (2.3) any a(�; �) that is a salar

produt on H

1

0

(
)

2

equivalent to the H

1

0

(
)

2

usual (�; �)

H

1

0

salar

produt. And for the numerial omputation (to test the loking

or the unloking) we hoose a(�; �) = (�; �)

H

1

0

. In that ase, the Euler

assoiated problem to (2.2) reads: Find (u; p) 2 (H

1

0

(
))

2

�H

1

0

(
)

suh that for all (v; q) 2 (H

1

0

(
))

2

�H

1

0

(
):

(

(gradu; gradv)

L

2

+ �(u� gradp; v)

L

2

= (g; v)

L

2

;

�(u� gradp;�gradq)

L

2

= (f; q)

L

2

;

(2.4)

i.e.:

�((u; p); (v; q)) = (g; v)

L

2

+ (f; q)

L

2

;

where:

�((u; p); (v; q)) = (gradu; gradv)

L

2

+ �(u�gradp; v�gradq)

L

2

:

3 General setting and interpretation of the problem

3.1 The setting

We onsider a Hilbert spae H and denote (�; �) = (�; �)

H

and jj:jj =

jj:jj

H

the salar produt and assoiated norms in H. If k is any

integer, we also denote (�; �) = (�; �)

H

and jj:jj = jj:jj

H

the salar



produt and assoiated norms in the Cartesian produt H

k

= H �

H:::�H (k times). Then we onsider two Hilbert spaes V and Q

suh that V � H

m

and Q � H

n

, m and n integers, and we suppose

that V is dense in H

m

.

We onsider a salar produt (u; v)

V

on V and denote jjvjj

V

the

assoiate norm, and we suppose that the natural injetion from V

to H

m

is ontinuous:

9

V

> 0; 8v 2 V; jjvjj

H

� 

V

jjvjj

V

: (3.1)

We onsider a di�erential operator G : Q ! H

m

suh that

(Gp;Gq)

H

denoted

= (p; q)

Q

de�nes a salar produt on Q. We denote

jjqjj

Q

= jjGqjj

H

the assoiated norm, and we suppose that the nat-

ural injetion from Q to H

n

is ontinuous:

9

Q

> 0; 8q 2 Q; jjqjj

H

� 

Q

jjqjj

Q

: (3.2)

And we equip V �Q with the norm (jjvjj

2

V

+jjqjj

2

Q

)

1

2

.

We then onsider �nite dimensional subspaes V

h

� V and

Q

h

� Q and denote by �

V

h

and �

Q

h

the orthogonal projetion

operator from H

m

to V

h

or on Q

h

relative to the (�; �)

H

salar prod-

ut. I.e., for x 2 H

m

and y 2 H

n

, �

V

h

x 2 V

h

and �

Q

h

y 2 Q

h

are

haraterized by:

(�

V

h

x; v

h

)

H

= (x; v

h

)

H

; 8v

h

2 V

h

;

(�

Q

h

y; q

h

)

H

= (y; q

h

)

H

; 8q

h

2 Q

h

:

And we have Pythagorean equality \jj�

V

h

xjj

2

H

+ jjx��

V

h

xjj

2

H

=

jjxjj

2

H

" as well as the identity \(x��

V

h

x; ~x��

V

h

~x) = (x��

V

h

x; ~x)"

(idem with �

Q

h

y).

Then we onsider a bilinear, ontinuous and oerive form a(�; �)

on V , and denote jjajj the ontinuity onstant and � > 0 and � > 0

the onstants satisfying:

a(v; v) � �jjvjj

2

V

and a(v; v) � �jjvjj

2

H

; 8v 2 V; (3.3)

where � exists sine we have supposed that the natural injetion

from V to H

m

is ontinuous. In partiular, when a(�; �) is symmet-

ri, a(�; �) is a salar produt on V equivalent to the (�; �)

V

salar

produt.

3.2 The ontinuous problem

For some given g 2 H

m

and f 2 H

n

we look at the problem: Find

(u; p) 2 V �Q suh that for all (v; q) 2 V �Q:

�((u; p); (v; q)) = (g; v) + (f; q); (3.4)



where for any � > 0:

�((u; p); (v; q)) = a(u; v) + �(u�Gp; v �Gq): (3.5)

And we will be interested in the ase � `large'. Problem (3.4) also

reads: Find (u; p) 2 V �Q suh that for all (v; q) 2 V �Q:

(

a(u; v) + �(u�Gp; v) = (g; v);

�(u�Gp;�Gq) = (f; q):

(3.6)

In ase a(�; �) is symmetri, problem (3.4) also reads: Find

(u; p) 2 V �Q suh that:

M(u; p) = inf

(v;q)2V �Q

M(v; q); (3.7)

where:

M(v; q) =

1

2

a(v; v) +

�

2

jjv �Gqjj

2

� (g; v)� (f; q): (3.8)

Proposition 3.1 For all (v; q) in V �Q:

�((v; q); (v; q)) � �jjvjj

2

V

;

and:

�((v; q); (v; q)) �

��

�+�

jjqjj

2

Q

; (3.9)

where

��

�+�

(oerivity onstant on Q) is optimal and of order 0 in �.

And �(�; �) is ontinuous on V � Q: it exists 

�

> 0 suh that

for all (u; p) and (v; q) in V �Q:

�((u; p); (v; q)) � 

�

q

jjujj

2

V

+jjpjj

2

Q

q

jjvjj

2

V

+jjqjj

2

Q

; (3.10)

where 

�

= O(�) (ontinuity onstant = jj�jj) as � inreases to

in�nity. Then problem (3.4) is well-posed in V �Q.

Proof. It is straightforward that �((v; q); (v; q)) � �jjvjj

2

V

(with � given in (3.3)), for any (v; q) 2 V �Q.

With � given in (3.3) we have, for any (v; q) 2 V �Q:

�((v; q); (v; q)) � �jjvjj

2

H

+ �jjv �Gqjj

2

H

;

i.e.:

�((v; q); (v; q)) � (� + �)jjvjj

2

H

+ 2�jjvjj

H

jjGqjj

H

+ �jjGqjj

2

H

:



And the max of the onstants  that satisfy \(�+�)x

2

+2�xy+�y

2

�

y

2

" is  =

��

�+�

. Indeed we want that the seond order poly-

nomial \P (X) = (�+�)X

2

+ 2�X + (��)" to have its disrim-

inant is �0 (no solution for the equation P (X) = 0), i.e suh that

�

2

� (�+�)(��) � 0, i.e. suh that  �

��

�+�

. And then (3.9).

Sine v and q are independent variables, and V is dense in H,

we an hoose v as lose as wished to Gq (in the jj:jj

H

-norm), so

that  =

��

�+�

is indeed the best onstant. And as �!1, we have

��

�+�

! � = ��

0

:

��

�+�

is of order 0 in � as � inreases to in�nity.

Then with �

�

= min(�;

��

�+�

), we get the oerivity of � on

V �Q.

Then we have, for any (u; p); (v; q) 2 V �Q:

�((u; p); (v; q))

� jjajjjjujj

V

jjvjj

V

+�

2

V

jjujj

V

jjvjj

V

+ �

V

(jjujj

V

jjqjj

Q

+ jjvjj

V

jjpjj

Q

) + �jjpjj

Q

jjqjj

Q

from whih we get (3.10).

Then by Lax{Milgram Theorem the problem is well-posed:

There exists a unique solution (u; p) 2 V � Q that satis�es

�((u; p); (u; p)) � jjf jj

H

jjpjj

H

+ jjgjj

H

jjujj

H

and then:

(jjujj

2

V

+ jjpjj

2

Q

)

1

2

�

�

�



�

(

2

V

jjgjj

2

H

+ 

2

Q

jjf jj

2

H

)

1

2

;

where 

Q

and 

V

are the ontinuity onstants de�ned in (3.1)

and (3.2).

Remark 3.2 The di�erene of order between the oerivity

onstant �

�

= O(1) and the ontinuity onstant jj�jj = O(�) is

expeted to yield diÆulties for the disrete assoiated equations.

Indeed the onditioning of the assoiated matrix to invert will be

of order

jj�jj

�

�

= 0(�) so that numeris will explode with �. This is

expeted.

However, what is not expeted is that the disrete solution de-

grades muh faster than expeted from the matrix onditioning

number: The results for problem (2.4) are already inaeptable for

relatively small values of � on a reasonnable mesh, for example

� = 100 with an usual mesh.

3.3 The disrete assoiated problem

The disrete problem assoiated to (3.4) reads: Find (u

h

; p

h

) 2

V

h

�Q

h

suh that for all (v

h

; q

h

) 2 V

h

�Q

h

:

�((u

h

; p

h

); (v

h

; q

h

)) = (g; v

h

) + (f; q

h

): (3.11)



And for this disrete problem we get (to ompare to (3.9)):

Proposition 3.3 For any (v

h

; q

h

) 2 V

h

�Q

h

we have:

�((v

h

; q

h

); (v

h

; q

h

)) �

��

�+�

jjq

h

jj

2

Q

+

�

2

�+�

jjGq

h

��

V

h

Gq

h

jj

2

H

: (3.12)

Proof. We have:

(u

h

�Gp

h

;�Gq

h

) = (u

h

��

V

h

Gp

h

;�Gq

h

) + (Gp

h

��

V

h

Gp

h

; Gq

h

)

= (u

h

��

V

h

Gp

h

;��

V

h

Gq

h

) + (Gp

h

��

V

h

Gp

h

; Gq

h

��

V

h

Gq

h

);

so that the funtional �(�; �) (given in (3.5)) also reads in V

h

�Q

h

:

�((u

h

; p

h

); (v

h

; q

h

)) = a(u

h

; v

h

) + �(u

h

��

V

h

Gp

h

; v

h

��

V

h

Gq

h

)

+ �(Gp

h

��

V

h

Gp

h

; Gq

h

��

V

h

Gq

h

):

Then, for any (v

h

; q

h

) 2 V

h

� Q

h

, with the a omputation similar

to the one of the previous proof:

�((v

h

; q

h

); (v

h

; q

h

)) �

��

�+�

jj�

V

h

Gq

h

jj

2

+ �jjGq

h

��

V

h

Gq

h

jj

2

:

Then with jj�

V

h

Gq

h

jj

2

= jjGq

h

jj

2

�jjGq

h

��

V

h

Gq

h

jj

2

(Pythagorean

relation) and �

��

�+�

+ � =

�

2

�+�

we get (3.12).

3.4 An interpretation of the loking

We onsider the ase H = L

2

(
), V = H

1

0

(
)

m

and Q = H

1

0

(
),

together with G = grad.

For the ontinuous problem (3.4), the oerivity onstant is of

order 0 in �, see (3.9), and jjpjj

H

1

0

= O(jjf jj

L

2

) as � inreases to

in�nity, i.e. jjpjj

H

1

0

is of the same order as jjf jj

L

2

.

But, for the disrete ounterpart (3.11): Suppose V

h

is \small"

ompared to Q

h

, for example small suh that there exists some di-

retion p

h

verifying gradp

h

6= 0 and �

V

h

gradp

h

= 0. Then suh p

h

yield a oerivity onstant \= �

�

�+�

+�

�

�+�

= � in (3.12) whih

is of order 1 in �. Then if suh p

h

is solution we ould have

jjp

h

jj

H

1

0

=

1

�

O(jjf jj

L

2

) and p

h

vanishes as � inreases to in�nity

(loking phenomenon).

Suh p

h

diretions (or at least diretions p

h

suh that �

V

h

gradp

h

is one order of magnitude smaller than gradp

h

) are usual in �nite

element omputations: Just take the 1-D ase 
 =℄�1; 1[, its par-

tition 
 =℄ � 1; 0[

S

℄0; 1[, the spae H

1

0

(
), its disrete V

h

= P

1

approximation whih is here of dimension 1 and generated by the



hat P

1

basis fontion ' given by '(�1) = '(1) = 0 and '(0) = 1,

that is '(x) = x+1 on ℄�1; 0[ and '(x) = �x+1 on ℄0; 1[. We

have grad' = '

0

that equals +1 on ℄�1; 0[ and �1 on ℄0; 1[ (dis-

ontinuous), whereas its (ontinuous) projetion �

V

h

grad' satis�ed

�

V

h

grad' = 0 (trivial omputation).

3.5 The disrete orreted problem

As a orollary of Proposition 3.3, we de�ne on V �Q:

�

1h

((u; p); (v; q))

= �((u; p); (v; q))�

�

2

�+�

(Gp��

V

h

Gp;Gq��

V

h

Gq)

(3.13)

where �(�; �) has been de�ned in (3.5).

Proposition 3.4 For any (v

h

; q

h

) 2 V

h

�Q

h

:

�

1h

((v

h

; q

h

); (v

h

; q

h

)) �

��

�+�

jjGq

h

jj

2

L

2

; (3.14)

and

��

�+�

is the maximum oerivity in the variable q

h

.

Proof. �

1h

has been built for that, see (3.12).

In many appliations, we don't know the value of �: We an only

estimate it. And we annot take an estimate of � larger than � if

we don't want to destroy the oerivity in V or V

h

. We then de�ne:

�



=

�



;  � 1: (3.15)

Remark 3.5 An estimation of the Rayleigh quotient gives an

approximation of �. Then for the numerial omputations we shall

hoose �



' �

2

=

�

2

.

And we will not be able to take �



= 0, i.e make ! 1: This

would lead to the vanishing of some required oerivity in p

h

.

And we de�ne on V �Q (and then on V

h

�Q

h

):

�

h

((u; p); (v; q))

= �((u; p); (v; q))�

�

2

�+�



(Gp��

V

h

Gp;Gq��

V

h

Gq)

(3.16)

And the disrete orreted problem now reads: Find (u

h

; p

h

) 2

V

h

�Q

h

suh that for all (v

h

; q

h

) 2 V

h

�Q

h

:

�

h

((u

h

; p

h

); (v

h

; q

h

)) = (g; v

h

) + (f; q

h

); (3.17)



i.e.:

8

<

:

a(u

h

; v

h

) + �(u

h

�Gp

h

; v

h

) = (g; v

h

);

�(u

h

�Gp

h

;�Gq

h

)�

�

2

�+�



(Gp

h

��

V

h

Gp

h

; Gq

h

) = (f; q

h

):

(3.18)

Proposition 3.6 We have, for any (v

h

; q

h

) 2 V

h

�Q

h

:

�

h

((v

h

; q

h

); (v

h

; q

h

)) � �jjv

h

jj

2

V

;

and:

�

h

((v

h

; q

h

); (v

h

; q

h

)) � 

h

jjq

h

jj

2

Q

; (3.19)

where 

h

=

�

2

(���



)

(�+�)(�+�



)

is the maximun oerivity onstant on Q

h

,

and 

h

2 [

��

�+�

; 2

��

�+�

℄ is of order 0 in �.

And �

h

(�; �) is ontinuous on V � Q and on V

h

� Q

h

with a

ontinuity onstant of order 1 in �. And problem (3.17) is well-

posed.

Proof. The only really new result to prove is (3.19).

We have

�

2

�+�



=

�

2

�+�

+ (

�

2

�+�



�

�

2

�+�

) =

�

2

�+�

+

�

2

(���



)

(�+�)(�+�



)

, and

then:

�

h

((v

h

; q

h

); (v

h

; q

h

))

= �

1h

((v

h

; q

h

); (v

h

; q

h

)) +

�

2

(���



)

(�+�)(�+�



)

jjGq

h

��

V

h

Gq

h

jj

2

L

2

:

And ���



= �

�1



< �, then

�

2

(���



)

(�+�)(�+�



)

=

�(���



)

(�+�)

�

(�+�



)

2 [0;

��

(�+�)

℄,

and then the result.

We also have:

�

h

((u

h

; p

h

); (v

h

; q

h

)) = a(u

h

; v

h

) + �(u

h

��

V

h

Gp

h

; v

h

��

V

h

Gq

h

)

+ �



�

�+�



(Gp

h

��

V

h

Gp

h

; Gq

h

��

V

h

Gq

h

);

and the pratial omputation will be done as (with w

h

= �

V

h

Gp

h

):

Find (u

h

; p

h

; w

h

) 2 V

h

�Q

h

�V

h

suh that for all (v

h

; q

h

; w

0

h

) 2

V

h

�Q

h

�V

h

:

8

>

>

>

>

>

<

>

>

>

>

>

:

a(u

h

; v

h

) + �(u

h

; v

h

)� �(Gp

h

; v

h

) = (g; v

h

);

��(u

h

; Gq

h

) +

�



�

�+�



(Gp

h

; Gq

h

) +

�

2

�+�



(w

h

; Gq

h

) = (f; q

h

);

�

2

�+�



(Gp

h

; w

0

h

)�

�

2

�+�



(w

h

; w

0

h

) = 0:

(3.20)



And in the ase V

h

= P

1

�nite elements, the last equation an be

solved very heaply with the mass lumping tehnique: The mass

matrix resulting from the (w

h

; w

0

h

)

L

2

term is made diagonal and its

inverse is thus omputed at (almost) no ost. And we then solve

the two equation problem in two unknowns (3.18) instead of the

above three equation problem (3.20).

Remark 3.7 If a(�; �) is symmetri, problem (3.17) also reads:

Find (u

h

; p

h

) 2 V

h

�Q

h

suh that:

M

h

(u

h

; p

h

) = inf

(v

h

;q

h

)2V

h

�Q

h

M

h

(v

h

; q

h

); (3.21)

where

M

h

(v

h

; q

h

) =

1

2

a(v

h

; v

h

) +

�

2

jjv

h

�Gq

h

jj

2

�

�

2

2(�+ �



)

jjGq

h

��

V

h

Gq

h

jj

2

� (f; q

h

)� (g; v

h

);

(to ompare to (3.8)).

3.6 Error omputation

We onsider the solution (u; p) of (3.4) and the solution (u

h

; p

h

)

of (3.17) (disrete orreted problem). We have the onvergene

result:

Proposition 3.8 For any (u

i

; p

i

) 2 V

h

� Q

h

, it exists d

h

> 0

suh that:

(jju�u

h

jj

2

V

+jjp�p

h

jj

2

Q

)

1

2

� d

h

(�)[(jju�u

i

jj

2

V

+jjp�p

i

jj

2

Q

)

1

2

+ jjGp��

V

h

Gpjj

H

℄;

(3.22)

and d

h

= d

h

(�) = O(�).

Proof. We use the �nite element tehnique: We have, for any

(v

h

; q

h

) 2 V

h

�Q

h

:

�

h

((u�u

h

; p�p

h

); (v

h

; q

h

)) =

�

2

�+�



(Gp��

V

h

Gp;Gq

h

):

And for any (v

i

; p

i

) 2 V

h

�Q

h

(interpolants), we get:

�

h

((u

i

�u

h

; p

i

�p

h

); (v

h

; q

h

)) = �

h

((u

i

�u; p

i

�p); (v

h

; q

h

))

+

�

2

�+�



(Gp��

V

h

Gp;Gq

h

):



With Proposition 3.6 we get, with v

h

= u

i

�u

h

, q

h

= p

i

�p

h

and

0�

�

�+�

�1:

�

�

h

(jju

i

�u

h

jj

2

V

+jjp

i

�p

h

jj

2

Q

)

� jj�

h

jj(jju�u

i

jj

2

V

+jjp�p

i

jj

2

Q

)

1

2

(jju

i

�u

h

jj

2

V

+jjp

i

�p

h

jj

2

Q

)

1

2

+ �jjGp��

V

h

Gpjj

H

jjG(p

i

�p

h

)jj

H

;

where �

�

h

= min(�;

��

�+�

). And with jjG(p

i

�p

h

)jj

H

= jjp

i

�p

h

jj

Q

�

(jju

i

�u

h

jj

2

Q

+jjp

i

�p

h

jj

2

Q

)

1

2

we get:

(jju

i

�u

h

jj

2

V

+jjp

i

�p

h

jj

2

Q

)

1

2

�

jj�

h

jj

�

�

h

(jju�u

i

jj

2

V

+jjp�p

i

jj

2

Q

)

1

2

+

�

�

�

h

jjGp��

V

h

Gpjj

H

:

Then, with jju�u

h

jj

2

� 2jju�u

i

jj

2

+ 2jju

i

�u

h

jj

2

and jjp�p

h

jj

2

�

2jjp�p

i

jj

2

+ 2jjp

i

�p

h

jj

2

, we get (3.22).

Remark 3.9 We annot expet a bound independent of � sine

the ontinuity onstant jj�jj for the ontinuous problem is of order

O(�), whereas the oerivity onstant is of order O(1).

Then the above error omputation shows that the added orre-

tion term does not destroy the error: We have the usual expeted

result.

3.7 The variable s = (�+�)u� �Gp

We extrat �



-oerivity out of a(�; �) (proedure used to ompute

the oerivity in the variable q

h

). Rewrite (3.6) as: Find (u; p) 2

V �Q suh that for all (v; q) 2 V �Q:

8

<

:

(a(u; v)� �



(u; v)) + (�+�



)(u; v)� �(Gp; v) = (g; v);

�

�+�



[(�+�



)u� �Gp;�Gq) + �



(Gp;Gq)℄ = (f; q):

Then we introdue the variable s = (�+�



)u � �Gp 2 H

m

, and

the problem reads: Find (u; p; s) 2 V � Q � H

m

suh that for all

(v; q; s

0

) 2 V �Q�H

m

:

8

>

>

>

>

<

>

>

>

>

:

(a(u; v)� �



(u; v)) + (s; v) = (g; v);

�



�

�+�



(Gp;Gq)�

�

�+�



(s;Gq) = (f; q);

(u; s

0

)�

�

�+�



(Gp; s

0

)�

1

�+�



(s; s

0

) = 0:

(3.23)



This problem is well-posed sine (3.6) is.

Now onsider the disrete problem assoiated to (3.23): Find

(u

h

; p

h

; s

h

) 2 V

h

�Q

h

�V

h

suh that for all (v

h

; q

h

; s

0

h

) 2 V

h

�Q

h

�V

h

:

8

>

>

>

>

<

>

>

>

>

:

(a(u

h

; v

h

)� �



(u

h

; v

h

)) + (s

h

; v

h

) = (g; v

h

);

�



�

�+�



(Gp

h

; Gq

h

)�

�

�+�



(s

h

; Gq

h

) = (f; q

h

);

(u

h

; s

0

h

)�

�

�+�



(Gp

h

; s

0

h

)�

1

�+�



(s

h

; s

0

h

) = 0;

(3.24)

where the new variable s

h

in looked for in V

h

. Sine V

h

� V and

V � H, we have V

h

� H and we still deal with onforming �nite

elements.

Then (3.24)

3

gives:

s

h

= (�+�



)u

h

� ��

V

h

Gp

h

2 V

h

;

and then by elimination of s

h

in (3.24)

1;2

, problem (3.24) reads:

Find (u

h

; p

h

) 2 V

h

�Q

h

suh that for all (v

h

; q

h

) 2 V

h

�Q

h

:

8

<

:

a(u

h

; v

h

) + �(u

h

�Gp

h

; v

h

)

L

2

= (g; v

h

)

L

2

;

(��u

h

+

�

2

�+�



�

V

h

Gp

h

+

��



�+�



Gp

h

; Gq

h

)

L

2

= (f; q

h

)

L

2

:

And this is the disrete orreted problem (3.17) sine

�

2

�+�



�

V

h

Gp

h

+

��



�+�



Gp

h

= �Gp

h

�

�

2

�+�



(Gp

h

��

V

h

Gp

h

):

Here we have just rewritten the disrete ounterpart (3.24) of the

ontinuous problem (3.23) without the addition of any term.

Then problem (3.23) ould be onsidered as the one to be dis-

retized to avoid any loking, instead of problem (3.4) whih re-

quires a stabilization term (when P

1

�nite elements are used).

Case of a substitution problem. Take a(�; �)=(�; �)

H

and f=0,

and then onsider problem (3.6) that now reads: Find (u; p) 2

H

m

�Q suh that for all (v; q) 2 H

m

�Q:

(

(u; v) + �(u�Gp; v) = (g; v);

(u�Gp;�Gq) = 0:

(3.25)

This is a substitution problem: (3.25)

1

gives (�+1)u = �Gp + g

and then (3.25)

2

gives:

(Gp;Gq) = (g;Gq):



But the disrete ounterpart of (3.25) gives (�+1)u

h

= ��

V

h

Gp

h

+

�

V

h

g and then:

(�+ 1)(Gp

h

; Gq

h

)� �(�

V

h

Gp

h

; Gq

h

) = (�

V

h

g;Gq

h

):

This is not anymore a substitution problem in the disrete ase

(unless V

h

is large enough so that �

V

h

Gp

h

= Gp

h

). And we ould

get loking.

Now, if we onsider equations (3.23), for whih we take �



=

� = 1 (the oerivity onstant � = 1 is known), we get: Find

(u; p; s) 2 H

m

�Q�H

m

suh that for all (v; q; s

0

) 2 H

m

�Q�H

m

:

8

>

>

>

>

<

>

>

>

>

:

(s; v) = (g; v);

�

�+ 1

(Gp;Gq)�

�

�+ 1

(s;Gq) = 0;

(u�

�

�+ 1

Gp; s

0

)�

1

�+ 1

(s; s

0

) = 0;

(3.26)

and the disrete ounterpart immediatly gives:

(Gp

h

; Gq

h

) = (�

V

h

g;Gq

h

) (3.27)

for any q

h

2 Q

h

. This is the expeted disrete result in that ase

of a plain substitution problem.

Thus, to formulate problem (3.6) in terms of problem (3.23)

seems to yield a reasonnable diret disrete problem (3.24) to avoid

the loking phenomenon.

4 Proof of the unloking

For the ontinuous problem, following Brezzi and Fortin [9℄, we

suppose that g = 0 together with a(�; �) symmetri and we are

interested in a lower bound:

(f) � �((u; p); (u; p))

where (f) > 0 is a onstant independent of � and > 0 as soon as

f 6= 0.

The idea is that (u; p) realizes the minimum of M de�ned

in (3.7) and that at (u; p) we have M(u; p) is < 0. And to prove

that this minimum is < 0 it is suÆient to prove that it is already

< 0 in some subspae.

This has been done by Brezzi and Fortin [9℄ in the subspae

f(w; z) 2 V �Q : w = Gzg.

For the disrete orreted assoiated equations (3.17):



Proposition 4.1 With g = 0 the disrete orreted prob-

lem (3.17) has a unique solution that satis�es:



0

(f) � �

h

((u

h

; p

h

); (u

h

; p

h

)): (4.1)

where 

0

(f) > 0 is independent of �.

Proof. The proof follows the steps of the ontinuous ase, see

Brezzi and Fortin [9℄ and is done in the ase �



= � for simpliity

(similar proof when 0 < �



< �):

1- The solution (u

h

; p

h

) realizes the minimum of the funtional

M

h

de�ned in (3.21). We suppose that � > � (we are interested in

the limit ase � ! 1) so that

�

2

�

��

�+�

� �. And we look for a

minimum of this funtional in the subspae f(v

h

; q

h

) 2 V

h

� Q

h

:

v

h

= �

V

h

Gq

h

g. We then onsider the funtional de�ned on Q

h

by:

J(z

h

) =M

h

(�

V

h

Gz

h

; z

h

)

=

1

2

a(�

V

h

Gz

h

;�

V

h

Gz

h

) +

��

2(�+�)

jjGz

h

��

V

h

Gz

h

jj

2

� (f; z

h

):

(4.2)

This funtional is �-onvexe with � =

1

4

as soon as � � � sine, for

any q

h

; z

h

in Q

h

:

J

00

(q

h

)(z

h

; z

h

) �

�

2

jj�

V

h

Gz

h

jj

2

H

+

��

2(�+�)

jjGz

h

��

V

h

Gz

h

jj

2

H

;

�

1

2

��

�+�

jjGz

h

jj

2

H

�

1

4

jjz

h

jj

2

Q

:

We are in �nite dimensional spaes and then a minimum exists

in Q

h

and is unique: We denote it q

�

h

. And q

�

h

6= 0 unless f = 0,

or more preisely q

�

h

6= 0 as soon as there exists one z

h

2 Q

h

suh

that (f; z

h

) 6= 0, whih is assumed in any �nite element method

(the spae Q

h

is `dense in the limit' in Q).

Sine q

�

h

realizes the minimum of J , we have (Euler assoiated

equation to J), for all z

h

2 Q

h

:

a(�

V

h

Gq

�

h

;�

V

h

Gz

h

) +

��

�+�

(Gq

�

h

��

V

h

Gq

�

h

; Gz

h

��

V

h

Gz

h

) = (f; z

h

):

(4.3)

Then for suh a minimum we have, as soon as � � �, replaing



in (4.2) (f; z

h

) by the left-hand side of (4.3):

M

h

(�

V

h

Gq

�

h

; q

�

h

)

= �

1

2

a(�

V

h

Gq

�

h

;�

V

h

Gq

�

h

)�

��

2(�+�)

jjGq

�

h

��

V

h

Gq

�

h

jj

2

H

;

� �

�

2

jj�

V

h

Gq

�

h

jj

2

H

�

�

4

jjGq

�

h

��

V

h

Gq

�

h

jj

2

H

� �

�

4

jjGq

�

h

jj

2

H

;

� �

�

4

jjq

�

h

jj

2

Q

< 0;

whih is stritly negative as soon as f 6= 0. Then the Euler equa-

tion (3.17) (with g=0) gives (f; p

h

) = �

h

((u

h

; p

h

); (u

h

; p

h

)) and then

M

h

(u

h

; p

h

) = �

1

2

�

h

((u

h

; p

h

); (u

h

; p

h

)). And we get, together with

M

h

(u

h

; p

h

) �M

h

(�

V

h

Gq

�

h

; q

�

h

):

1

2

�

h

((u

h

; p

h

); (u

h

; p

h

)) �

�

4

jjq

�

h

j

2

Q

> 0:

2- Now we prove that q

�

h

stays away from 0 as � inreases to

in�nity. Consider the limit ase � =1. Problem (4.3) then reads:

For all z

h

2 Q

h

:

a(�

V

h

Gq

1

h

;�

V

h

Gz

h

) + �(Gq

1

h

��

V

h

Gq

1

h

; Gz

h

��

V

h

Gz

h

) = (f; z

h

);

where q

1

h

exists and q

1

h

6= 0: We have supposed f 6= 0 and this

problem also reads as a minimum problem of an ellipti funtional

sine:

a(�

V

h

Gq

1

h

;�

V

h

Gq

h

) + �(Gq

1

h

��

V

h

Gq

1

h

; Gq

h

��

V

h

Gq

h

)

� �jj�

V

h

Gq

1

h

jj

2

H

+ �jjGq

1

h

jj

2

H

� �jj�

V

h

Gq

1

h

jj

2

H

= �jjGq

1

h

jj

2

H

:

Then denoting e

q

= q

1

h

� q

�

h

, with (4.3) we get, forall z

h

2 Q

h

,

together with � =

��

�+�

+

�

2

�+�

:

a(�

V

h

Ge

q

;�

V

h

Gz

h

) +

��

�+�

(Ge

q

��

V

h

Ge

q

; Gz

h

��

V

h

Gz

h

)

= �

�

2

�+�

(Gq

1

h

��

V

h

Gq

1

h

; Gz

h

��

V

h

Gz

h

):

Now with z

h

= e

q

we get:

�jj�

V

h

Gq

1

h

jj

2

H

+

��

�+�

jjGe

q

��

V

h

Ge

q

jj

2

�

�

2

�+�

jjGq

1

h

��

V

h

Gq

1

h

jj

H

jjGe

q

��

V

h

Ge

q

jj

H

;

�

�

2

�+�

(

�

2�

jjGq

1

h

��

V

h

Gq

1

h

jj

2

H

+

�

2�

jjGe

q

��

V

h

Ge

q

jj

2

H

):



so that, sine � �

��

2(�+�)

:

��

2(�+�)

jjGe

q

jj

2

H

�

�

3

2�(�+�)

jjGq

1

h

��

V

h

Gq

1

h

jj

2

H

�!

�!1

0:

And with

��

2(�+�)

= O(

�

2

) we get that q

�

h

! q

1

h

in Q when � !1.

And with q

1

h

6= 0 (we have suppose f 6= 0) we have (4.1) and the

disrete orreted problem (3.17) is unloked.

5 Error omputation with s = (�+�)u� �Gp

We want to prove that jju�u

h

jj

V

and jjp�p

h

jj

Q

onverges to 0

with h independently of �, onversely to the result of Proposi-

tion 3.8.

5.1 Continuous equations

5.1.1 The problem

We onsider problem (3.23) that we rewrite: Find (u; p; s) 2 V �

Q�H

m

suh that for all (v; q; s

0

) 2 V �Q�H

m

:

8

>

>

>

>

>

>

<

>

>

>

>

>

>

:

[(a(u; v)��



(u; v)) + �



�

�+�



(Gp;Gq)℄

+ (s; v�

�

�+�



Gq) = (g; v) + (f; q);

(u�

�

�+�



Gp; s

0

)�

1

�+�



(s; s

0

) = 0:

(5.1)

This problem reads as the usual onstraint type problem: Find

(u; p; s) 2 V �Q�H

m

suh that for all (v; q; s

0

) 2 V �Q�H

m

:

(

~a((u; p); (v; q)) +

~

b((v; q); s) = (g; v) + (f; q);

~

b((u; p); s

0

)� "~(s; s

0

) = 0;

(5.2)

where " =

1

�+�



and:

8

>

>

>

>

<

>

>

>

>

:

~a((u; p); (v; q)) = a(u; v)� �



(u; v) + �



�

�+�



(Gp;Gq);

~

b((u; p); s

0

) = (u�

�

�+�



Gp; s

0

);

~(s; s

0

) = (s; s

0

)

H

:



Then we onsider the funtional de�ned on V �Q�H

m

:

 ((u; p; s); (v; q; s

0

))

= ~a((u; p); (v; q)) +

~

b((v; q); s)�

~

b((u; p); s

0

) + "~(s; s

0

)

(5.3)

and the problem (5.1) reads: Find (u; p; s) 2 V �Q�H

m

suh that

for all (v; q; s

0

) 2 V �Q�H

m

:

 ((u; p; s); (v; q; s

0

)) = (g; v) + (f; q): (5.4)

This problem is well-posed sine (3.23) is.

5.1.2 The norms

We de�ne on V �Q�H

m

the following norm:

jjj(v; q; s

0

)jjj = (jjvjj

2

V

+ jjqjj

2

Q

+ jjs

0

jj

2

V

0

+ jjG

t

s

0

jj

2

Q

0

+"jjs

0

jj

2

H

)

1

2

: (5.5)

Proposition 5.1  is ontinuous on (V � Q � H

m

)

2

: Exists



 

> 0, for any (u; p; s) and (v; q; s

0

) in V �Q�H

m

:

j ((u; p; s); (v; q; s

0

))j � 

 

jjj(u; p; s)jjj jjj(v; q; s

0

)jjj; (5.6)

where 

 

= O(1) as �!1.

Proof. We have:

j ((u; p; s); (v; q; s

0

))j

� (�+�





2

V

)jjujj

V

jjvjj

V

+

�



�

�+�



jjpjj

Q

jjqjj

Q

+jjvjj

V

jjsjj

V

0

+jjujj

V

jjs

0

jj

V

0

+

�

�+�



(jjqjj

Q

jjG

t

sjj

Q

0

+ jjpjj

Q

jjG

t

s

0

jj

Q

0

)+"jjsjj

H

jjs

0

jj

H

;

and then (5.6).

We also de�ne on V

h

�Q

h

� V

h

the following norm:

jjj(v

h

; q

h

; s

0

h

)jjj

h

= (jjv

h

jj

2

V

+ jjq

h

jj

2

Q

+ jjs

0

h

jj

2

V

0

+ "jjs

0

h

jj

2

H

)

1

2

: (5.7)

(The jjG

t

sjj

Q

0

term is absent by omparison to (5.5).)

Proposition 5.2  is ontinuous on (V � Q � H

m

) � (V

h

�

Q

h

�V

h

) in the following sense: It exists 

 

1

> 0, for any (u; p; s) 2

V �Q�H

m

and (v

h

; q

h

; s

0

h

) 2 V

h

�Q

h

� V

h

:

j ((u; p; s); (v

h

; q

h

; s

0

h

))j

� 

 

1

(jjj(u; p; s)jjj

2

+jj�

V

h

Gpjj

2

V

)

1

2

jjj(v

h

; q

h

; s

0

h

)jjj

h

;

(5.8)

where 

 

= O(1) as �!1.



Proof. We have:

j ((u; p; s); (v

h

; q

h

; s

0

h

))j

� (�+�





2

V

)jjujj

V

jjv

h

jj

V

+

�



�

�+�

jjpjj

Q

jjq

h

jj

Q

+jjv

h

jj

V

jjsjj

V

0

+jjujj

V

jjs

0

h

jj

V

0

+

�

�+�



(jjq

h

jj

Q

jjG

t

sjj

Q

0

+jj�

V

h

Gpjj

V

jjs

0

h

jj

V

0

)+"jjsjj

H

jjs

0

h

jj

H

;

and then (5.8).

5.1.3 The inf-sup onditions

And we have the two inf-sup onditions:

8s 2 H

m

;

8

>

>

<

>

>

:

sup

v2V

hs; vi

jjvjj

V

� jjsjj

V

0

;

sup

q2Q

hs;Gqi

jjqjj

Q

� jjG

t

sjj

Q

0

:

(5.9)

These inequalities are in fat equalities by de�nition of the dual

norms jj:jj

V

0

and jj:jj

Q

0

.

Proposition 5.3 The solution of (3.23) satis�es

(jjujj

2

V

+jjpjj

2

Q

+jjsjj

2

V

0

+jjG

t

sjj

2

Q

0

+

1

�+�

jjsjj

2

H

)

1

2

� (jjf jj

Q

0

+jjgjj

V

0

);

(5.10)

where  is a onstant independent of � as soon as for example

� � max(�



; 1).

Proof. Choose any (u; p; s) 2 V �Q�H

m

.

1- Case >1, i.e. �



<�. We have, as soon as � � �



:

a(u; u)��



jjujj

2

H

�

�



jjujj

2

V

�

�



jjujj

2

H

+

�(�1)



jjujj

2

V

�

�(�1)



jjujj

2

V

so that, sine � � �



and then �



�

�+�



�

�



2

, for any given (u; p; s):

 

h

((u; p; s); (u; p; s)) �

�(�1)



jjujj

2

V

+

�



2

jjpjj

2

Q

+ "jjsjj

2

H

:



Then with (5.9)

1

we have the existene of v

s

2 V suh that:

 ((u; p; s); (v

s

; 0; 0)) � �(jjajj+�





2

V

)jjujj

V

jjv

s

jj

V

+ jjsjj

V

0

jjv

s

jj

V

;

where we an hoose v

s

suh that jjv

s

jj

V

= jjsjj

V

0

. Then, with

(jjajj+�





2

V

)jjujj

V

jjv

s

jj

V

�

1

2

(jjajj+�





2

V

)

2

jjujj

2

V

+

1

2

jjv

s

jj

2

V

,

we get:

 ((u; p; s); (v

s

; 0; 0)) � �

(jjajj+�





2

V

)

2

2

jjujj

2

V

+

1

2

jjsjj

2

V

0

:

Then with (5.9)

2

we have the existene of q

s

2 Q suh that,

with

�

�+�



�

1

2

(we have supposed � � �



):

 ((u; p; s); (0; q

s

; 0)) � ��



jjpjj

Q

jjq

s

jj

Q

+

1

2

jjG

t

sjj

Q

0

jjq

s

jj

Q

;

where we an hoose q

s

suh that jjq

s

jj

Q

= jjG

t

sjj

Q

0

. Then, with

�



jjpjj

Q

jjq

s

jj

Q

� �



2

jjpjj

2

Q

+

1

4

jjq

s

jj

2

Q

,

we get:

 ((u; p; s); (0; q

s

; 0)) � ��



2

jjpjj

2

Q

+

1

4

jjG

t

sjj

2

Q

0

:

Then we get, for any �

1

; �

2

> 0:

 ((u; p; s); (u; p; s) + �

1

(v

s

; 0; 0) + �

2

(0; q

s

; 0))

� (

�(�1)



��

1

(jjajj+�





2

V

)

2

2

)jjujj

2

V

+(

�



2

��

2

�



2

)jjpjj

2

Q

+ "jjsjj

2

H

+

�

1

2

jjsjj

2

V

0

+

�

2

4

jjG

t

sjj

2

Q

0

:

(5.11)

Then hoose �

1

=

1

2

2�(�1)

(jjajj+�





2

V

)

2

and �

2

=

1

4�



to get, with (v; q; s

0

) =

(u+�

1

v

s

; p+�

2

q

s

; s):

 ((u; p; s); (v; q; s

0

))

�

�(�1)

2

jjujj

2

V

+

�



4

jjpjj

2

Q

+ "jjsjj

2

H

+

�

1

2

jjsjj

2

V

0

+

�

2

4

jjG

t

sjj

2

Q

0

:

Then with jjj(v; q; s

0

)jjj = O(jjj(u; p; s)jjj) (easy to hek) we get:

 ((u; p; s); (v; q; s

0

)) � 

0

jjj(u; p; s)jjj jjj(v; q; s

0

)jjj; (5.12)

with 

0

> 0 independent of " (i.e. of �).

2- Case =1, i.e. �



=�. Then we have:

a(u; u)��jjujj

2

H

= a(u; u)�

�



jjujj

2

H

�

�(�1)



jjujj

2

H

�

�(�1)



jjujj

2

V

�

�(�1)



jjujj

2

H

;



for any >1. Then we reover oerivity in jjujj

H

with:

 ((u; p; s); (0; 0;�u)) � jjujj

2

H

� jjujj

H

jjGpjj

H

� "jjsjj

H

jjujj

H

;

�

1

2

jjujj

2

H

� jjpjj

2

Q

� "

2

jjsjj

2

H

;

so that, for any �

1

; �

2

; �

3

> 0 (with the omputation to get (5.11)

where  reads in plae of ):

 ((u; p; s); (u; p; s) + �

1

(v

s

; 0; 0) + �

2

(0; q

s

; 0) + �

3

(0; 0;�u))

� (

�(�1)



��

1

(jjajj+�

2

V

)

2

2

)jjujj

2

V

+(

�

2

� �

2

�

2

� �

3

)jjpjj

2

Q

+(

�

3

2

�

�(�1)



)jjujj

2

H

+"(1�"�

3

)jjsjj

2

H

+

�

1

2

jjsjj

2

V

0

+

�

2

4

jjG

t

sjj

2

Q

0

:

Then we hoose �

1

=

1

2

2�(�1)

(jjajj+�

2

V

)

2

, �

2

=

1

8�

and �

3

=

�

8

, so that we also

now hoose  suh that

�(�1)



=

1

2

�

3

2

, i.e. =1+

1

31

=

32

31

to get, with

(v; q; s

0

) = (u+�

1

v

s

; p+�

2

q

s

; s��

3

u):

 ((u; p; s); (v; q; s))

�

�(�1)

2

jjujj

2

V

+

�

3

4

jjujj

2

H

+

�

4

jjpjj

2

Q

+ "(1�"�

3

)jjsjj

2

H

+

�

1

2

jjsjj

2

V

0

+

�

2

4

jjG

t

sjj

2

Q

0

:

Here

�(�1)

2

=

�

64

,

�

3

4

=

�

32

, "(1�"�

3

)="

8�+7�

8(�+�)

,

�

1

2

=

�

64(jjajj+�

2

V

)

2

and

�

2

4

=

1

32�

.

Then with jjj(v; q; s

0

)jjj = O(jjj(u; p; s)jjj) (easy to hek) we get:

 ((u; p; s); (v; q; s

0

)) � 

0

jjj(u; p; s)jjj jjj(v; q; s

0

)jjj;

with 

0

> 0 independent of " (i.e. of �).

Then with Proposition 5.1, we get (5.10).

5.2 Disrete assoiated equations { ase 1

5.2.1 The disrete problem

The disrete assoiated problem is the disrete ounterpart of (5.4):

Find (u

h

; p

h

; s

h

) 2 V

h

� Q

h

� V

h

suh that for all (v

h

; q

h

; s

0

h

) 2

V

h

�Q

h

� V

h

:

 ((u

h

; p

h

; s

h

); (v

h

; q

h

; s

0

h

)) = (g; v

h

) + (f; q

h

): (5.13)



5.2.2 The �rst disrete inf-sup ondition

We have:

8s

h

2 V

h

; sup

v

h

2V

h

hs

h

; v

h

i

jjv

h

jj

V

� jjs

h

jj

V

0

h

: (5.14)

where jjs

h

jj

V

0

h

means the dual norm relative to the restrition on

V

h

: jjs

h

jj

V

0

h

= sup

v

h

2V

h

hs

h

;v

h

i

jjv

h

jj

V

.

Lemma 5.4 If the interpolation estimate jj�

V

h

vjj

V

� jjvjj

V

holds with  > 0 independent of h, then the norms jj:jj

V

0

and jj:jj

V

0

h

are equivalents on V

h

. In partiular:

9

1

> 0; 8s

h

2 V

h

; sup

v

h

2V

h

hs

h

; v

h

i

jjv

h

jj

V

� 

1

jjs

h

jj

V

0

; (5.15)

where 

1

is independent of h.

Proof. We have, for any s

h

2 V

h

:

jjs

h

jj

V

0

= sup

v2V

(s

h

; v)

H

jjvjj

V

= sup

v2V

(s

h

;�

V

h

v)

H

jj�

V

h

vjj

V

jj�

V

h

vjj

V

jjvjj

V

�  sup

v

h

2V

h

hs

h

; v

h

i

V

0

;V

jjv

h

jj

V

= jjs

h

jj

V

0

h

;

thanks to the interpolation inequality, with  independent of h.

Then with (5.14)

1

and

1

jjs

h

jj

V

0

�

1

jjs

h

jj

V

0

h

we dedue (5.15) with 

1

=

1



independent of h. Together with the trivial relation jj:jj

V

0

h

� jj:jj

V

0

,

we onlude that the norms jj:jj

V

0

and jj:jj

V

0

h

are equivalents on V

h

.

5.2.3 First error omputation

Lemma 5.5 Suppose the interpolation estimate jj�

V

h

vjj

V

�

jjvjj

V

holds with  > 0 independent of h. Then there exists a

onstant 

0

> 0 suh that for any (u

h

; p

h

; s

h

) 2 V

h

�Q

h

�V

h

there

exists (v

h

; q

h

; s

0

h

) 2 V

h

�Q

h

�V

h

verifying:

 ((u

h

; p

h

; s

h

); (v

h

; q

h

; s

0

h

)) � 

0

jjj(u

h

; p

h

; s

h

)jjj

h

jjj(v

h

; q

h

; s

0

h

)jj

h

;

(5.16)

where 

0

= O(1) as �!1 (with jjj:jjj

h

de�ned in (5.7)).

Proof. 1- Case >1, i.e. �



<�. We have, as soon as � � �



:

a(u

h

; u

h

)��



jju

h

jj

2

H

�

�



jju

h

jj

2

V

�

�



jju

h

jj

2

H

+

�(�1)



jju

h

jj

2

V

�

�(�1)



jju

h

jj

2

V



so that, sine � � �



and then �



�

�+�



�

�



2

, for any given

(u

h

; p

h

; s

h

):

 ((u

h

; p

h

; s

h

); (u

h

; p

h

; s

h

)) �

�(�1)



jju

h

jj

2

V

+

�



2

jjp

h

jj

2

Q

+ "jjs

h

jj

2

H

:

Then with (5.15) we have the existene of v

s

2 V suh that:

 ((u

h

; p

h

; s

h

); (v

s

; 0; 0))

� �(jjajj+�





2

V

)jju

h

jj

V

jjv

s

jj

V

+

1

jjs

h

jj

V

0

jjv

s

jj

V

;

where we an hoose v

s

suh that jjv

s

jj

V

= jjs

h

jj

V

0

. Then, using

(jjajj+�





2

V

)jju

h

jj

V

jjv

s

jj

V

�

1

2

1

(jjajj+�





2

V

)

2

jju

h

jj

2

V

+



1

2

jjv

s

jj

2

V

,

we get:

 ((u

h

; p

h

; s

h

); (v

s

; 0; 0)) � �

(jjajj+�





2

V

)

2

2

1

jju

h

jj

2

V

+



1

2

jjs

h

jj

2

V

0

:

Then we get, for any �

1

> 0:

 ((u

h

; p

h

; s

h

); (u

h

; p

h

; s

h

) + (�

1

v

s

; 0; 0))

� (

�(�1)



�

�

1

(jjajj+�





2

V

)

2

2

1

)jju

h

jj

2

V

+

�



2

jjp

h

jj

2

Q

+ "jjs

h

jj

2

H

+

�

1



1

2

jjs

h

jj

2

V

0

:

(5.17)

Choose �

1

=

1

2

�(�1)2

1

(jjajj+�





2

V

)

2

and (v

h

; q

h

; s

0

h

) = (u

h

+�

1

v

s

; p

h

; s

h

) to get:

 ((u

h

; p

h

; s

h

); (v

h

; q

h

; s

0

h

))

�

�(�1)

2

jju

h

jj

2

V

+

�



4

jjp

h

jj

2

Q

+ "jjs

h

jj

2

H

+

�

1



1

2

jjs

h

jj

2

V

0

Then with jjj(v

h

; q

h

; s

0

h

)jjj

h

= O(jjj(u

h

; p

h

; s

h

)jjj)

h

(easy to hek)

we get (5.16).

2- Case =1, i.e. �



=�. Then we have, for any >1:

a(u

h

; u

h

)��jju

h

jj

2

H

= a(u

h

; u

h

)�

�



jju

h

jj

2

H

�

�(�1)



jju

h

jj

2

H

�

�(�1)



jju

h

jj

2

V

�

�(�1)



jju

h

jj

2

H

:

And we have:

 ((u

h

; p

h

; s

h

); (0; 0;�u

h

))

� jju

h

jj

2

H

� jju

h

jj

H

jjGp

h

jj

H

� "jjs

h

jj

H

jju

h

jj

H

�

1

2

jju

h

jj

2

H

� jjp

h

jj

2

Q

� "

2

jjs

h

jj

2

H

:

(5.18)



Then, for any �

1

; �

3

> 0 (using (5.17)):

 ((u

h

; p

h

; s

h

); (u

h

; p

h

; s

h

) + (�

1

v

s

; 0;��

3

u

h

))

� (

�(�1)



�

�

1

(jjajj+�





2

V

)

2

2

1

)jju

h

jj

2

V

+ (

�



2

��

3

)jjp

h

jj

2

Q

+ (

�

3

2

�

�(�1)



)jju

h

jj

2

H

+ "(1��

3

")jjs

h

jj

2

H

+

�

1



1

2

jjs

h

jj

2

V

0

:

Then take  and �

3

suh that

�

4

=�

3

and

�

3

2

=

�(�1)



, i.e. =

9

8

and

�

3

=

2�

9

, so that (1��

3

")=(1�

2�

9(�+�)

) �

1

2

, and with �

1

=

1

2

�(�1)2

1

(jjajj+

�





2

V

)

2

we get, denoting (v

h

; q

h

; s

0

h

) = (u

h

+�

1

v

s

; p

h

; s

h

��

3

u

h

):

 ((u

h

; p

h

; s

h

); (v

h

; q

h

; s

0

h

))

�

�(�1)

2

jju

h

jj

2

V

+

�

4

jjp

h

jj

2

Q

+

"

2

jjs

h

jj

2

H

+

�

1



1

2

jjs

h

jj

2

V

0

:

Then with jjj(v

h

; q

h

; s

0

h

)jjj

h

= O(jjj(u

h

; p

h

; s

h

)jjj)

h

(easy to hek)

we get (5.16).

Proposition 5.6 If jj�

V

h

vjj

V

� jjvjj

V

holds (interpolation es-

timate), we have:

(jju�u

h

jj

2

V

+jjp�p

h

jj

2

Q

+jjs�s

h

jj

2

V

0

+"jjs�s

h

jj

2

H

)

1

2

�  inf

(v

i

;q

i

;s

0

i

)2V

h

�Q

h

�V

h

(jju�v

i

jj

2

V

+jjp�q

i

jj

2

Q

+jjs�s

0

i

jj

2

V

0

+"jjs�s

0

i

jj

2

H

+jj�

V

h

(G(p�p

i

))jj

2

V

)

1

2

;

(5.19)

where  = O(1) as �!1.

Proof. We have:

 ((u�u

h

; p�p

h

; s�s

h

); (v

h

; q

h

; s

0

h

)) = 0;

so that for any (u

i

; p

i

; s

i

) 2 V

h

�Q

h

� V

h

) we get:

 ((u

h

�u

i

; p

h

�p

i

; s

h

�s

i

); (v

h

; q

h

; s

0

h

))

=  ((u�u

i

; p�p

i

; s�s

i

); (v

h

; q

h

; s

0

h

)):

We use (5.8) and (5.16) to get:

jjj(u

h

�u

i

; p

h

�p

i

; s

h

�s

i

)jjj

h

= O

�

(jjj(u�u

i

; p�p

i

; s�s

i

)jjj

2

+jj�

V

h

G(p�p

i

)jj

2

V

)

1

2

�

:

Then sine jjj(u�u

h

; p�p

h

; s�s

h

)jjj

h

� jjj(u�u

i

; p�p

i

; s�s

i

)jjj

h

+

jjj(u

h

�u

i

; p

h

�p

i

; s

h

�s

i

)jjj

h

, we get (5.19).



5.3 Disrete assoiated equations { ase 2

5.3.1 The seond disrete inf-sup ondition

We have:

8s

h

2 V

h

; sup

q

h

2Q

h

hs

h

; Gq

h

i

jjq

h

jj

Q

� jjG

t

s

h

jj

Q

0

h

; (5.20)

where jjG

t

s

h

jj

Q

0

h

is the dual norm relative to the restrition on V

h

:

jjG

t

s

h

jj

Q

0

h

= sup

q

h

2Q

h

hG

t

s

h

;q

h

i

jjq

h

jj

Q

.

Unfortunatly (5.20) is not possible if jjG

t

s

h

jj

Q

0

reads in plae

of jjG

t

s

h

jj

Q

0

h

: We fall on the usual problem of the satisfation of

a disrete inf-sup ondition. We just have, in the general ase, a

weakened result (degraded inf-sup ondition):

Lemma 5.7 When G

t

(V

h

) � H

m

and with the interpolation

inequalities jjq � �

Q

h

qjj

H

� h

r

jjqjj

Q

and jj�

Q

h

qjj

Q

� jjqjj

Q

where

r � 0 and  > 0 is independent of h, we have: Exists 

2

> 0 suh

that for all s

h

2 V

h

:

sup

q

h

2Q

h

hs

h

; Gq

h

i

jjq

h

jj

Q

� 

2

jjG

t

s

h

jj

Q

0

� h

r

jjG

t

s

h

� �

Q

h

G

t

s

h

jj

H

; (5.21)

where 

2

is independent of h.

(This Lemma has already been settled in [15℄, and we reall the

proof for sake of ompleteness.)

Proof. We have, with the notation q

h

= �

Q

h

q when q 2 Q:

jjG

t

s

h

jj

Q

0

= sup

q2Q

(G

t

s

h

; q)

jjqjj

Q

= sup

q2Q

(G

t

s

h

; q

h

) + (G

t

s

h

; q � q

h

)

jjqjj

Q

;

= sup

q2Q

(

(G

t

s

h

; q

h

)

jjqjj

Q

+

(G

t

s

h

� �

Q

h

G

t

s

h

; q � q

h

)

jjqjj

Q

);

� sup

q2Q

(

(G

t

s

h

; q

h

)

jjq

h

jj

Q

jjq

h

jj

Q

jjqjj

Q

+ jjG

t

s

h

� �

Q

h

G

t

s

h

jj

H

jjq � q

h

jj

H

jjqjj

Q

);

�  (jjG

t

s

h

jj

Q

0

h

+ h

r

jjG

t

s

h

� �

Q

h

G

t

s

h

jj

H

);

thanks to the interpolation inequalities. And with sup

Q

h

hs

h

;Gq

h

i

jjq

h

jj

Q

=

jjG

t

s

h

jj

Q

0

h

and with 

2

=

1



, we get (5.21).



5.3.2 Stabilized disrete problem

In that ase we want ontrol on jjG

t

s

h

jj

Q

0

. Then we have a problem

beause of the extra h

r

-term in (5.21) that degrades the inf-sup

ondition. Then onsider the equations (3.16) modi�ed (stabilized)

by introduing the h

r

-term of (5.21): Find (u

h

; p

h

; s

h

) 2 V

h

�Q

h

�V

h

suh that for all (v

h

; q

h

; s

0

h

) 2 V

h

�Q

h

� V

h

:

 

h

((u

h

; p

h

; s

h

); (v

h

; q

h

; s

0

h

)) = (g; v

h

) + (f; q

h

); (5.22)

where:

 

h

((u

h

; p

h

; s

h

); (v

h

; q

h

; s

0

h

))

=  ((u

h

; p

h

; s

h

); (v

h

; q

h

; s

0

h

))

+ Æh

2r

(G

t

s

h

��

Q

h

G

t

s

h

; G

t

s

0

h

��

Q

h

G

t

s

0

h

)

H

:

(5.23)

h = h

max

is the maximum of the diameter of the �nite elements

and where Æ is a stabilization onstant given in the next Lemma.

Problem (5.22) will read for the numerial omputations

8

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

:

((gradu

h

; gradv

h

)��



(u

h

; v

h

)) + �



�

�+�



(gradp

h

; gradq

h

)

+ (s

h

; v

h

�

�

�+�



gradq

h

) = (g; v

h

) + (f; q

h

);

(u

h

�

�

�+�



gradp

h

; s

0

h

)�

1

�+�



(s

h

; s

0

h

)

� Æh

2r

(divs

h

��

Q

h

divs

h

; divs

0

h

)

H

= 0;

(5.24)

where V

h

= S

h

and Q

h

are the P

1

ontinuous �nite elements.

5.3.3 Seond error omputation

De�ne the norm:

jjj(v

h

; q

h

; s

0

h

)jjj

h2

= (jjv

h

jj

2

V

+jjq

h

jj

2

Q

+jjs

0

h

jj

2

V

0

+jjG

t

s

0

h

jj

2

Q

0

+"jjs

0

h

jj

2

H

+h

2r

jjG

t

s

0

h

��

Q

h

G

t

s

0

h

jj

2

H

)

1

2

:

(5.25)

Lemma 5.8 Suppose that the solution (u; p; s) of (5.2) satis�es

G

t

s 2 H

n

and that the interpolation inequalities of Lemma 5.4 and

Lemma 5.7 hold. In the ase �



< � hoose Æ �



2

8�



, and in the

ase �



= � either suppose jjG

t

ujj

H

� jjujj

V

and hoose Æ �



2

8�



, or

suppose the following inverse inequality:

9

i

> 0; 8v

h

2 V

h

; h

r

jjG

t

v

h

jj

H

� 

i

jjv

h

jj

H



and hoose Æ � min(

1

2�

2

;

1

8

2

i

min(

�

16

;

1

4

)

). Then there exists a on-

stant 

0

> 0 suh that for any (u

h

; p

h

; s

h

) 2 V

h

�Q

h

�V

h

there exists

(v

h

; q

h

; s

0

h

) 2 V

h

�Q

h

�V

h

verifying:

 ((u

h

; p

h

; s

h

); (v

h

; q

h

; s

0

h

)) � 

0

jjj(u

h

; p

h

; s

h

)jjj

h2

jjj(v

h

; q

h

; s

0

h

)jj

h2

;

(5.26)

where 

0

= O(1) as �!1.

Proof. Choose any (u

h

; p

h

; s

h

) 2 V

h

�Q

h

� V

h

.

1- Case >1, i.e. �



<�. We have, as soon as � � �



:

a(u

h

; u

h

)��



jju

h

jj

2

H

�

�



jju

h

jj

2

V

�

�



jju

h

jj

2

H

+

�(�1)



jju

h

jj

2

V

�

�(�1)



jju

h

jj

2

V

so that, sine � � �



and then �



�

�+�



�

�



2

, for any given

(u

h

; p

h

; s

h

):

 

h

((u

h

; p

h

; s

h

); (u

h

; p

h

; s

h

)) �

�(�1)



jju

h

jj

2

V

+

�



2

jjp

h

jj

2

Q

+ "jjs

h

jj

2

H

+ Æh

2r

jjG

t

s

h

��

Q

h

G

t

s

h

jj

2

H

:

Then with (5.15) we have the existene of v

s

2 V suh that:

 

h

((u

h

; p

h

; s

h

); (v

s

; 0; 0))

� �(jjajj+�





2

V

)jju

h

jj

V

jjv

s

jj

V

+ 

1

jjs

h

jj

V

0

jjv

s

jj

V

;

where we an hoose v

s

suh that jjv

s

jj

V

= jjs

h

jj

V

0

. Then, with

(jjajj+�





2

V

)jju

h

jj

V

jjv

s

jj

V

�

1

2

1

(jjajj+�





2

V

)

2

jju

h

jj

2

V

+



1

2

jjv

s

jj

2

V

,

we get:

 

h

((u
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(5.27)

Then with (5.21) we have the existene of q
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(5.28)
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we get (5.26).
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22- And if the inverse inequality is used, we have:
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we get (5.26).

Proposition 5.9 Suppose that the hypotheses of Lemma 5.8

are satis�ed. Then:
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), and then the result with the

usual tehnique.

Remark 5.10 The value 

i

of the inverse inequality an be

omputed by an eigenvalue type omputation (through a Raileigh

quotient) as well as the value of �:
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However, Proposition 5.19 shows that the omputation of 

i

is use-

less if we use �



with  > 1.



6 Numerial results

The results are omputed with Matlab PDE Toolbox, thus with

the only use of P

1

-ontinuous �nite elements (the only available

elements up to now in the Toolbox).

The meshes used for the omputations are shown in Figure 1,

but sine the results are quite independents of these meshes, the

results shown are the one omputed with the �rst mesh (obtained

with the Matlab PDE Toolbox).

The problem under onern is (2.4). In the abstrat setting, we

then have V = H

1

0

(
)

2

, Q = H

1

0

(
), H = L

2

(
), G = grad. And

the problems that will be solved are:

1- The initial disretized problem (3.11),

2- The orreted disretized problem (3.17),

3- The disretized problem (3.24) (with the variable s

h

),

4- The disretized stabilized problem (5.24) (with the vari-

able s

h

).

The numeris are performed on the square 
 =℄0; 1[

2

to get the

analytial solution:

p = x

2

(1� x)

2

y

2

(1� y)

2

and u = gradp:

We hek that indeed p and u are in H

1

0

(
). And the soure terms

are then given by:

g = ��u; f = 0:

And the hoie for � is:

� = 100000

Finally � is omputed as realizing the minimum of the Rayleigh

quotient `

jjgradv

h

jj

2

L

2

jjv

h

jj

2

L

2

'. Its numerial value is lose to 20. And we

shall use �



= 10 '

�

2

.

The loked result is obtained using (3.11) (the initial disrete

equations), and the unloked result is obtained using either the

�rst orretion (3.17) or (3.24) (no signi�ant di�erenes), or the

stabilization (5.24).

We show a generi result, see Figure 2, and then we plot the

omputed errors relative to the di�erent omputations, all results

showing the O(h) expeted onvergene:

1. The �rst orretion (3.17) and its ounterpart (3.24) yield

very similar errors whih will be represented just one.



2. The stabilization (5.24) yields some di�erenes with the two

previous orreted equations in the numerial values of the

error and will be represented on its own, the omputation

being done with �



= 10 '

�

2

to avoid the omputation of the

inverse inequality onstant.

Remark 6.1 The initial disrete loked equations (3.11) yields

too large errors to be shown on the same plot as the errors of the

unloked equations. Thus they are not shown but their behaviour

is lassial.

The onlusion is: For Mindlin{Reissner thik plate type equa-

tions, the use of P

1

-ontinuous �nite elements in eah variable seems

to be adequate one the modi�ations proposed are performed.
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Figure 1: Meshes used: The results shown in the following �gures

have been obtained using the left mesh and its re�nements whih

are given by Matlab PDE Toolbox. The results obtained with the

right mesh and its re�niments are similars and not represented.

Eah triangle is half a square, eah square having the same size,

and the mesh size h has been taken to be the size of a side of a

square. This size h is used in Figure 3 to ompute the errors.
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Figure 2: The values of p

h

are given by the gray sale and the olor

bar on the right of the Figures whereas the values of u

h

= u are

given by the arrows, the maximum length max(jjujj) being given

under eah Figure. The �rst Figure orresponds to equations (3.11)

and shows values of p

h

(and u

h

) too small whih is typial of loked

equations. And the seond Figure orresponds to equations (3.17)

and shows unloked p

h

and u

h

�elds, the visual results being similar

for equations (3.24) or the stabilized equations (5.24). The �nite

elements used are the P

1

-ontinuous �nite elements in eah variable.
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Figure 3: Error omputations, orresponding to the ase � =

100000 are represented. The horizontal axis is the h axis. The

left Figure orreponds to the relative error

jjgradp�gradp

h

jj

L

2

jjgradpjj

L

2

orre-

sponding to the salar �eld p, whereas the right Figure orresponds

to the relative error

jjgradu�gradu

h

jj

L

2

jjgradujj

L

2

orresponding to the vetor

�eld u. And on both of these �gures, the 'x' lines orrespond to the

unloked equations (3.17), whereas the 'o' lines orrespond to the

unloked and stabilized equations (5.24). The errors show the O(h)

behaviour.


