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Objective: To understand the �rst and second principles. Starting point: Explanation of what a
di�erential form is, exact (like dU or dS), or non-exact (like δQ and δW ).
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The notation g := f means �g is de�ned by g = f �.

1 The space of linear forms

The �nite dimensional vector space E, dimE = n ∈ N∗, will be either the usual geometric space R3 or

the space Rn of thermodynamic variables T, P, V, n,N, µ, .... (~ei)i=1,...,n
noted

= (~ei) will be a Cartesian basis

in E, and a vector ~v =
∑n
i=1vi~ei ∈ E will be represented by its matrix column [~v] =

 v1
...
vn

.
1.1 The dual space E∗ = L(E;R) of linear forms

Recall: If X and Y are two sets then (F(X ;Y),+, .) =noted F(X ;Y) is the vector space of functions
from X to Y where the sum f + g of the functions f and g is de�ned by (f + g)(x) := f(x) + g(x), and
the exterior multiplication λ.f =noted λf of a scalar λ and a function f is de�ned by (λ.f)(x) := λ(f(x)).

De�nition 1.1 A linear form ` on E is a linear real valued function ` : E → R, i.e. a function ` ∈ F(E;R)
such that `(~v + λ~w) = `(~v) + λ`(~w) for all ~v, ~w ∈ E and λ ∈ R.

The space of linear forms on E is called L(E;R) =notedE∗, and

`(~v)
noted

= `.~v, (1.1)

the (external) dot notation `.~v being used because of the �distributivity type property characterizing
linearity�: `.(~v + λ~w) = `.~v + λ`.~w.

E∗ is a vector space, sub-space of F(E∗;R), easy proof.

Interpretation: A linear form ` ∈ E∗ is a measuring tool: It measures vectors ~v ∈ E (value `.~v ∈ R).

Dimension calculus: • The �dimension� (length, temperature, pressure, volume...) of a vector ~v ∈ E
is denoted {~v}. So a vector ~v2 which as the same dimension satis�es {~v2} = {~v}.
• If λ ∈ R, then {λ}=noted 1 (no dimension, or dimension of the arrival space R, e.g. energy).

�Dimension calculus�: If ~v2 = λ~v, where λ ∈ R, then {~v2} = {λ~v} = {λ}{~v} = 1{~v} = {~v} as expected
(~v2 and ~v have the same dimension).
• If ` ∈ E∗ and ~v ∈ E then `.~v ∈ R, so 1 = {`.~v} = 1, and �dimension calculus�: {`.~v} = {`}{~v} where

{`} is the dimension of `, so
{`} = {~v}−1. (1.2)

So, the dimension of a linear form is the inverse of the dimension of a vector. In other words, the
dimension of a �covariant� vector (= a vector in E∗ i.e. a linear form) is the inverse of the dimension of
a �contravariant� vector (= a vector un E).
• The dimension of a bilinear form g : (~v, ~w) ∈ E×E → g(~u,~v) = (~u,~v)g ∈ R is given by {g(~u,~v)} = 1

(dimension of a real); And {g(~u,~v)} = {g}{~u}{~v} (dimension calculus), thus

{g} =
1

{~v}2
= {`}2. (1.3)
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1.2 Dual basis

(~ei) in E being a basis in E, let πi ∈ E∗ be the projection on Vect{~ei} parallel to the other directions,
i.e. πi ∈ E∗ (linear form) is de�ned by,

πi.~ej = δij , (1.4)

for all i, j = 1, ..., n, i.e. πi(~ei) = 1, and πi(~ej) = 0 if i 6= j. Hence, with ~v =
∑n
j=1 vj~ej and πi being

linear, πi(~v) = πi(
∑n
j=1 vj~ej) =

∑n
j=1 vj πi(~ej) =

∑n
j=1 vj δij , thus

πi.~v = vi. (1.5)

So πi is the (linear) tool that gives the i-th component of a vector relative to (~ei).

Example 1.2 ~X = T~e1 + P~e2 ∈ R2, where ~e1 models 1 Kelvin degree and ~e2 models 1 Pascal, gives:
π1( ~X) = T the temperature in Kelvin and π2( ~X) = P the pressure in Pascal.

Proposition 1.3 (and de�nition) (πi)i=1,...,n is a basis E∗, called the dual basis of the basis (~ei). And
if ` ∈ E∗ then

` =
∑
i

`i πi, written [`] = ( `1 ... `n ) , with `j = `.~ej . (1.6)

the row matrix [`] being the matrix of ` (relative to the basis (πi)). Thus, for all ~v =
∑
i vi~ei,

`.~v =
∑
i

`ivi = [`].[~v] (matrix calculation rule), (1.7)

the last equality with the usual product rule: (matrix 1 ∗ n) × (matrix n ∗ 1) = (matrix 1 ∗ 1).

Proof. 1- The πi are linearly independent: If a1, ..., an ∈ R and
∑n
i=1 ai πi = 0 then

∑n
i=1 ai πi(~ej) = 0,

thus
∑n
i=1 aiδij = 0, thus aj = 0, for all j.

2- The πi span E∗: Let ` ∈ Rn∗, let `i := `(~ei), let g :=
∑n
i=1`iπi; Thus g is linear (trivial) and

g(~ej) =
∑n
i=1`iπi(~ej) =

∑n
i=1`iδij = `j thus g(~ej) = `(~ej), for all j, thus g = `, thus ` =

∑n
i=1`iπi.

Thus (πi)i=1,...,n is a basis in E∗, and ` =
∑n
i=1`iπi gives `(~ej) = `j

And `.~v = (
∑
j `jπj).(

∑
i vi~ei) =

∑
ij `jvi πj(~ei) =

∑
ij `jvi δij =

∑
j `jvj = [`].[~v].

1.3 Cartesian setting: Notations for the dual basis

• In the geometric space if the variables names are x, y, ... then

π1
noted

= dx, π2
noted

= dy, ... (1.8)

• In the thermodynamic space if the variables names are T, P, ... then

π1
noted

= dT, π2
noted

= dP, ... (1.9)

2 Di�erential

2.1 De�nition and partial derivatives

De�nition 2.1 Let Ω be an open set in E. φ ∈ F(Ω,R) is di�erentiable at ~x0 ∈ E i� there exists a
linear form `~x0

=noted dφ(~x0) ∈ E∗ = L(E;R), called the di�erential of φ at ~x0, s.t., for all ~x near ~x0,

φ(~x) = φ(~x0) + dφ(~x0).(~x−~x0) + o(||~x−~x0||). (2.1)

Then (2.1) is called the �rst order Taylor development of φ near ~x0, and the a�ne function a~x0
: Rn → R

de�ned by a~x0
(~x) = φ(~x0) + dφ(~x0).(~x−~x0) is called the a�ne approximation of φ near ~x0 (the graph

of a~x0
is the tangent plane of φ at ~x0). In other words, a function φ is di�erentiable at ~x0 i� its graph

admits a tangent plane at ~x0.

De�nition 2.2 If φ is di�erentiable at all points in Ω, then φ is di�erentiable in Ω. The di�erential of φ

is then the function dφ :

{
Ω → Rn∗

~x → dφ(~x) := `~x

}
. Moreover if dφ is continuous at any ~x ∈ Ω then φ is said

to be C1 in Ω, i.e. φ ∈ C1(Ω;R) the space of C1 functions in Ω.
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(2.1) gives, for all ~v ∈ Rn,

φ(~x0+h~v) = φ(~x0) + h dφ(~x0).~v + o(h), (2.2)

thus

dφ(~x0).~v = lim
h→0

φ(~x0 + h~v)− φ(~x0)

h

noted
= ∂~vφ(~x0)

noted
=

∂φ

∂~v
(~x0). (2.3)

De�nition 2.3 dφ(~x0).~v is the directional derivative of φ in the direction ~v at ~x. And the i-th partial
derivative of φ at ~x is

dφ(~x).~ei
noted

= ∂iφ(~x)
noted

=
∂φ

∂~ei
(~x)

noted
=

∂φ

∂xi
(~x). (2.4)

This de�nes ∂iφ=noted ∂φ
∂xi

:

{
Ω → R
~x → dφ(~x).~ei

}
called the i-th partial derivative of φ.

2.2 Components of a di�erential in the dual basis

(~ei) is a Cartesian basis in Rn, (πi) is its dual basis (in Rn∗), φ is di�erentiable at ~x ∈ Ω. With (1.6):

Corollary 2.4 The components of dφ(~x) ∈ Rn∗, with respect to the dual basis (πi), are the ∂φ
∂xi

(~x):

dφ(~x) =
∂φ

∂x1
(~x)π1 + ...+

∂φ

∂xn
(~x)πn, (2.5)

i.e. [dφ(~x)] = ( ∂φ
∂x1

(~x) ... ∂φ
∂xn

(~x) ), row matrix called the Jacobian matrix of φ at ~x. With πi =noted dxi
(2.5) reads:

dφ(~x) =
∂φ

∂x1
(~x) dx1 + ...+

∂φ

∂xn
(~x) dxn. (2.6)

And dφ(~x).~v = ∂φ
∂x1

(~x) v1 + ...+ ∂φ
∂xn

(~x) vn = [dφ(~x)].[~v] (matrix product) when ~v =
∑n
i=1vi~ei.

Example 2.5 Suppose that the pressure P depends on the temperature T and volume V : So P =

P̃(T, V ) where P̃ :

{
R2 → R

~X = (T, V ) → P = P̃( ~X) = P̃(T, V )

}
. With (π1, π2) =noted(dT, dV ) (dual basis),

dP̃( ~X) =(2.6) ∂P̃
∂T ( ~X) dT + ∂P̃

∂V ( ~X) dV (as soon as P̃ is di�erentiable at ~X), i.e.

dP̃(T, V ) =
∂P̃
∂T

(T, V ) dT +
∂P̃
∂V

(T, V ) dV, i.e. [dP (T, V )] = ( ∂P∂T (T, V ) ∂P
∂V (T, V ) ) . (2.7)

Thermodynamical notations:

dP =
∂P

∂T |V
dT +

∂P

∂V |T
dV, i.e. [dP ] =

( ∂P
∂T |V

∂P
∂V |T

)
, (2.8)

which implicitly tells that P depends on the (independent) variables T and V .

3 Di�erential forms

3.1 De�nition

De�nition 3.1 Ω being an open set in E, A di�erential form in Ω is function α ∈ F(E;E∗). So

α(~x) :

{
E → R

~v → α(~x)(~v)
noted

= α(~x).~v

}
for all ~x ∈ Ω, dot notation since α(~x) is a linear form, cf. (1.1).

Particular case: If ∃φ ∈ C1(Ω;R) s.t. α = dφ (i.e. if α derives from a potential φ), then α is said to
be exact. Otherwise α is not exact.

Components. (πi) =noted(dxi) being the dual basis of a Cartesian basis (~ei) in E, cf. (1.4), (1.1) gives:

α(~x) = α1(~x) dx1 + ...+ αn(~x) dxn, where αi(~x) := α(~x).~ei (the components), (3.1)

i.e. [α(~x)] = (α1(~x) ... αn(~x) ) (row matrix).
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Example 3.2 (Non exact di�erential form.) n = 2; Consider the di�erential form (�dissipative energy�)

α(x, y) = −y dx+ x dy, i.e. α(x, y).~e1 = −y and α(x, y).~e2 = x. (3.2)

This di�erential form is not exact; If it were: ∃φ ∈ C1 s.t. α = dφ, so ∂φ
∂x (~x) = −y and ∂φ

∂y (~x) = x. And
∂φ
∂x (~x) = −y gives φ(~x) = −yx + g(y) for some C1 function g since φ ∈ C1. Hence ∂φ

∂y (~x) = −x + g′(y);

Thus ∂φ
∂y (~x) = x gives −x+ g′(y) = x, thus g′(y) = 2x for all ~x = (x, y) ∈ Ω (not empty): Absurd (take

~x1 = (x1, y) and ~x2 = (x2, y) with x1 6= x2 which gives g′(y) 6= g′(y)...). Thus α is not exact. (Remark: If

you looked for a φ ∈ C2 then Schwartz's Theorem gives
∂ ∂φ∂x
∂y (~x) =

∂ ∂φ∂y
∂x (~x), then −1 = +1: Absurde.)

Remark 3.3 The �rst principle tells : A �material� has a internal energy U , so dU is an exact di�erential
form, and dU = α + β is the sum of two di�erential forms (non exact in general) called the elementary
heat α = δQ and the elementary work β = δW : Usual notation: dU = δQ+ δW .

3.2 Curves, paths, trajectories

De�nition 3.4 Let Ω be an open subset in E. A (parametric) curve or path in Ω is a function ~r ∈
C1([t0, tf ]; Ω), where t0 < tf .

It is a closed when ~r(t0) = ~r(tf ).
The range, or image, of ~r is Γ = Im~r := {~x ∈ E : ∃t ∈ [t0, tf ] s.t. ~x = ~r(t)} (drawing).
When t is a time, a curve is also called a trajectory, with t0 and tf the initial and �nal times.

De�nition 3.5 The tangent vector along ~r at ~x = ~r(t) is ~v(~x) := ~r ′(t) =
∑n
i=1ri

′(t)~ei ∈ E. Hence

~r ′(t) = limh→0
~r(t+h)−~r(t)

h = ~v(~r(t)) is tangent at Im~r at ~r(t). If t is a time and ~x a point in our usual
geometric space R3, then the tangent vector is called the velocity.

Notations: A Cartesian basis (~ei) being chosen in E, [~r(t)] =

 r1(t)
...

rn(t)

 and [~r ′(t)] =

 r1
′(t)
...

rn
′(t)

 mean

~r(t) =
∑n
i=1ri(t)~ei and ~r

′(t) =
∑n
i=1ri

′(t)~ei.

Example 3.6 R2, (~ei) Euclidean basis, ~r : [0, 2π]→ R2 given by [~r(t)] =

(
x = r1(t) = a+R cos t
y = r2(t) = b+R sin t

)
: Its

range: Im~r = radius R circle centered at (a, b), and [~r ′(t)] =

(
−R sin t
R cos t

)
(tangent vector at ~r(t)).

3.3 Integration of a di�erential form

Let ~r : [t0, tf ]→ Ω be a curve in Ω open set in Rn.

De�nition 3.7 If α : Ω→ E∗ is a C0 di�erential form, then its integral along ~r is the real∫
~r

α :=

∫ tf

t=t0

α(~r(t)).~r ′(t) dt
noted

=

∫
α.d~r. (3.3)

Example 3.8 [α(x, y)] = (−y x ) (example 3.2), [~r(t)] =

(
x = R cos t
y = R sin t

)
, so [~r ′(t)] =

(
−R sin t
R cos t

)
,

with t ∈ [0, 2π]. Thus ∫
~r

α =

∫ tf

t=t0

α(~r(t)).~r ′(t) dt =

∫ 2π

t=0

R2 dt = 2πR2 (3.4)

since α(~r(t)).~r ′(t) = (−R sin t R cos t ) .

(
−R sin t
R cos t

)
= R2 sin2 t+R2 cos2 t = R2.

Proposition 3.9 If the di�erential form α is exact, α = dφ then
∫
~r
α only depends on the ends of the

curve ~r: ∫
~r

α =

∫
~r

dφ = φ(~r(tf ))− φ(~r(t0)) (3.5)

(And then we say that � φ is a primitive of α = dφ �.) In particular, if ~r is closed then
∮
~r
dφ = 0.
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Proof. (φ ◦ ~r)(t) = φ(~r(t)) = φ(r1(t), ..., rn(t)) gives

(φ ◦ ~r)′(t) = dφ(~r(t)).~r ′(t) (=
∂φ

∂x1
(~r(t))

dr1

dt
(t) + ...+

∂φ

∂xn
(~r(t))

drn
dt

(t)),

thus ∫
~r

dφ
(3.3)
=

∫ tf

t0

dφ(~r(t)).~r ′(t) dt =

∫ tf

t0

(φ ◦ ~r)′(t) dt = [(φ ◦ ~r)(t)]tft0 = φ(~r(tf ))− φ(~r(t0)).

And ~r is closed i� ~r(tf ) = ~r(t0).

Remark 3.10 Continuation of remark 3.3: dU = δQ+ δW with ~x = ~r(tf ) and ~x0 = ~r(t0).
• dU(~x), δQ(~x) and δW (~x) are meaningful: They are di�erential forms at a point.
• U(~x) is meaningful (potential at ~x): U(~x) = U(~x0) +

∫
~r
dU .

• But Q(~x) et W (~x) are meaningless; Only Q(~r) :=
∫
~r
δQ and W (~r) :=

∫
~r
δW are meaningful

(quantities which depend on a trajectory). So
∫
~r
δW makes sense while W (~x) = W (x0) +

∫
~r
δW doesn't

make sense: E.g. take δW = α in (3.4) which gives that
∫
~r
δW depends on R. We say that Q and W are

�quantities of energy� while U is an energy.

4 Issue: Impossible gradient vector

4.1 Linear form and inner scalar product: Riesz representation vector

Let (·, ·)g is a an inner scalar product in a vector space E and ||.||g =
√

(·, ·)g (associated norm),
and suppose that E is complete with respect to ||.||g, so (E, (·, ·)g) is a Hilbert space (always true if
dimE <∞).

Theorem 4.1 (Riesz representation theorem) Let ` ∈ E∗ be continuous (always true if dimE <

∞). Then ` can be represented by a (·, ·)g dependent vector ~̀g ∈ E:

∀` ∈ E∗, ∃!~̀g ∈ E s.t., ∀~v ∈ E, `.~v = (~̀g, ~v)g. (4.1)

Proof. Let Ker` = {~v ∈ E : `.~v = 0} = `−1(0) (closed hyperplane since ` is continuous). Let
Ker`⊥g = {~w ∈ E : ∀~v0 ∈ Ker`, (~w,~v0)g = 0} the (·, ·)g-orthogonal space. So E = Ker`⊕Ker`⊥g . Suppose

` 6= 0 (if ` = 0 then ~̀
g = ~0), thus ∃~w /∈ Ker`. Call ~w0 the (·, ·)g-orthogonal projection of ~w on Ker`

(drawing). Let ~n := ~w−~w0

||~w−~w0||g , so ~n ∈ Ker`⊥g and is (·, ·)g-unitary. Let ~v ∈ E, ~v = ~v0+λ~n ∈ Ker`⊕Ker`⊥g :

Thus (~v, ~n)g = 0 + λ = λ, and thus `(~v) = 0 + λ`(~n) = (~v, ~n)g`.~n = (~v, (`.~n)~n)g, thus ~̀g = (`.~n)~n

(uniqueness). And (existence) ~̀g := (`.~n)~n trivially satis�es `.~v = (~̀g, ~v)g. since (~̀g, ~v0)g = `.~v0 = 0 for

all ~v0 ∈ Ker`. Drawing: ~̀g is parallel to ~n (is (·, ·)g-orthogonal to Ker`). Dependence on (·, ·)g: E.g. if
(·, ·)h = 2(·, ·)g then (~̀g, ~v)g = `(~v) = (~̀h, ~v)h = 2(~̀h, ~v)h for all ~v, thus ~̀g = 2~̀h 6= ~̀

h (when ` 6= 0).

Dimension calculus: (4.1) gives {`}{~v} = {g}{~̀g}{~v}=(1.3) {`}2{~̀g}{~v}, thus {~̀g} = 1
{`} as expected:

~̀
g ∈ E (�contravariant�), hence its dimension is the inverse of the dimension ` ∈ E∗ (�covariant�), cf. (1.2).

Remark 4.2 The work done by a di�erential form α along a path ~r is W ∗(α,~r) =
∫
α.d~r. And the Riesz

representation theorem tells that α(~x) ∈ E∗ can be represented its (·, ·)g-Riesz representation vector

~αg(~x) =noted ~f(~x) called a �force vector� ((·, ·)g-dependent), thus, with (~v, ~w)g =noted ~v • ~w,

W ∗(α,~r) =

∫
α.d~r =

∫ tf

t=t0

α(~r(t)).~r ′(t) dt =

∫ tf

t=t0

~f(~r(t)) • ~r ′(t) dt
noted

=

∫
~f • d~r

noted
= W (~f, ~r), (4.2)

and W (~f, ~r) is called the work of ~f along ~r (fundamental in mechanics).

4.2 De�nition of a gradient

De�nition 4.3 If f : E → R is C1 and ~x ∈ E, then the (·, ·)g-Riesz-representation vector of df(~x) is

called the (·, ·)g-gradient vector of f at ~x and written
−−→∇gf (~x) (depends on (·, ·)g). So, cf. (4.1),

∀~v ∈ E, df(~x).~v = (
−−→∇gf (~x), ~v)g. (4.3)

If a (·, ·)g is imposed to all and (~v, ~w)g =noted ~v • ~w, then
−−→∇gf =noted−−→∇f , and df(~x).~v =

−−→∇f (~x) • ~v.

6



4.3 The Rn space of thermodynamic variables and impossible gradient

E.g. with the thermodynamical variables T, P : The considered Cartesian space is R2 = R×R = {(T, P )}
physically made of the �totally di�erent spaces R�: The dimensions of a temperature T and of a pressure P
are not comparable. Then choose a Cartesian basis ~e1 = (1, 0), ~e2 = (0, 1), where e.g. �1� means 1 Kelvin
for ~e1, and 1 Pascal for ~e2.

Issue: There is no physically meaningful inner scalar product (·, ·)g in this R2: E.g. ~v = T~e1 +P~e2 would
give ||~v||2 = T 2 + P 2... which adds a (squared) temperature with a (squared) pressure: Absurd.

Consequence: E.g. for the internal energy function U : (T, P ) ∈ R2 → U(T, P ) ∈ R we cannot use the
gradient of U , because there is no meaningful inner scalar product in the space R2 = {(T, P )}.

Result: We have to do with (we can only use) the di�erential dU (not some gradient of U).

5 Thermodynamic: vocabulary

5.1 Thermodynamic variables and functions

Let [t0, tf ] ⊂ R be a time interval, and O be an open set in the geometric space R3 = {~x = (x, y, z)}.

De�nition 5.1 A thermodynamic function is a function Xi :

{
[t0, tf ]×O → R

(t, ~x) → Xi(t, ~x),

}
that describes

a �thermodynamic system�. E.g. Xi =: temperature T , pressure P , volume V , number n of moles,
chemical potential µ, internal energy U , entropy S, number N of particles, ... And ~X = (X1, ..., Xn) :

[t0, tf ]×O → Rn is the associated vector. E.g. n=2 and ~X = (T, P ).

De�nition 5.2 A thermodynamic function Xi will also be called a �thermodynamic variable� when it is
�a variable of a thermodynamic function�; E.g. writing T = T̃ (P, V ) means that T depends on P and V :

Here P and V are the �thermodynamic variables� of the �thermodynamic function� T̃ .

Reminder: For a gaz, the amount of matter is given in moles: One mole is equal to the number of
atoms in 12 grams of carbon-12, so one mole = 6.02214076 1023 atoms = Avogadro constant (' 6.0 1023).

5.2 System in equilibrium and quasi-static transformation

De�nition 5.3 A system is in equilibrium i� the thermodynamic functions Xi are uniform in space, i.e.

Xi(t, ~x) = Xi(t, ~y), ∀i ∈ [1, n]N, t ∈ [t0, tf ], ~x, ~y ∈ O, and then Xi(t, ~x)
noted

= Xi(t). (5.1)

Then the thermodynamic transformation (the trajectory) t→ ~X(t) is called quasi-static if ~X is C1 in t;

And then the Xi are called state variables and ~X a state vector. (So, a quasi-static transformation is
�slow enough� for the thermodynamic variables to be uniform and C1 in t.)

In the following, all the transformations will be assumed to be quasi-static.

5.3 State function (�grandeur d'état�)

De�nition 5.4 A state function (�grandeur d'état� in French) is a function

φ :

{
Rn → R,
~X → φ( ~X),

(5.2)

where here Rn is the name for the space of the state variables. E.g. the �internal energy� φ = U :
(T, P, V )→ U = U(T, P, V ) (here n=3, ~X = (T, P, V ), and Φ is de�ned on its de�nition domain ⊂ R3).

A state function is also the name given to a functional (= a function of functions)

φ :

{
F([t0, tf ];Rn) → F([t0, tf ];R)

~X → φ( ~X) := φ ◦ ~X, with φ( ~X)(t) := (φ ◦ ~X)(t) = φ( ~X(t)).
(5.3)

E.g. U = U(T, P, V )(t) = U(T (t), P (t), V (t)) = the internal energy at t.
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The state functions φ will be supposed C1, so, with (5.2),

dφ( ~X) =
∂φ

∂X1
( ~X) dX1 + ...+

∂φ

∂Xn
( ~X) dXn. (5.4)

E.g.,

dU(T, P, V ) =
∂U
∂T

(T, P, V ) dT +
∂U
∂P

(T, P, V ) dP +
∂U
∂V

(T, P, V ) dV, (5.5)

and thermodynamic notation (shorten notation):

dU =
∂U

∂T |P,V
dT +

∂U

∂P |T,V
dP +

∂U

∂V |T,P
dV, (5.6)

which in particular tells that here the chosen variables are T, P, V .

5.4 State equation (state law)

De�nition 5.5 A state equation (or state law) is an implicit relation between the state variables: It is

Z( ~X) = 0, i.e. Z(T, P, V, ...) = 0, (5.7)

where Z : ~X → Z( ~X) ∈ R is some function (given by thermodynamic engineers).

Example 5.6 Perfect gas: Z(T, P, V, n) = PV − nRT gives the state equation PV − nRT = 0, or the

state law PV = nRT , where ~X = (T, P, V, n) ∈ R4 and R ' 8, 31 J.K−1.mol−1 (perfect gas constant).

5.5 Extensive and intensive quantities

Consider a body B, call B the set of all subsets of B, and consider a function A :

{
B → R+

b → A(b)

}
.

De�nition 5.7 1. If A(b1) + A(b2) = A(b1 ∪ b2) for all b1, b2 ∈ B, then A is said to be extensive (e.g.,
volume, number of particles, energy, entropy).

2. If A(b) = A(B) for all b ∈ B, then A is said to be extensive (e.g., temperature, pressure).

Remark 5.8 Extensivity and intensivity are also de�ned by: If B is cut in any two equal parts b1 and b2
then 1'- A extensive i� A(b1) +A(b2) = A(B), and 2'- A intensive i� A(b1) = A(b2) = A(b).

6 First principle of thermodynamics

6.1 First principle

6.1.1 First part: Existence of an internal energy state function U

Postulate: �the energy cannot be created or destroyed from nothing�, written as

Postulate, �rst part of the �rst law:

Any �object� has an �internal energy U � which is C1 for any quasi-static transformation.

I.e.: There exists a C1 function U : ~X = (T, P, V, n, ...) ∈ Rn → U = U( ~X) ∈ R called the internal energy

function (with U the value of the internal energy at ~X), s.t. U ◦ ~X : t ∈ [t0, tf ] → U( ~X(t)) is C1 for all

quasi-static transformation ~X : t ∈ [t0, tf ]→ ~X(t) ∈ Rn.

6.1.2 Second part: ∆U = Q+W

Observation: The heat Q measured in calories and the work W measured in Joule are energies (with
1 calorie ' 4.184 Joule). E.g., a friction, due to some work, produces heat. E.g., heating a gas creates
an increase in pressure which can produce some work (steam machines).
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Postulate, second part of the �rst law: 1- Along any thermodynamical transformation, the internal
energy U received by a body is the sum of the heat Q received and the work W received:

∆U = Q+W. (6.1)

2- And the heat and work are integrals of di�erential forms δQ and δW (non exact in general).
So, at any point of any quasi-static transformation ~r : [t0, tf ]→ Rn,

dU = δQ+ δW, (6.2)

and

∆U =

∫
~r

δQ+

∫
~r

δW
noted

= Q(~r) +W (~r), (6.3)

which means U(~r(tf ))− U(~r(t0)) =
∫ tf
t0
δQ(~r(t)).~r ′(t) dt+

∫ tf
t0
δW (~r(t)).~r ′(t) dt.

Remark 6.1 �Heat� and �work� are immaterial quantities (no �exchange of matter�); They are locally
mathematically modeled by a di�erential forms at a point along a trajectory, only after a trajectory ~r
has been considered (δQ and δW don't exist if there is no transformation). In other words, heat and
work are not a characteristic of a body: They only exists temporarily. (And heat can only be exchanged
spontaneously from a hot body to a cold body; This irreversibility is the object of the second law.)

6.1.3 Third part : U is an extensive quantity

Postulate, third part of the �rst law of thermodynamics

� The internal energy U is an extensive quantity. �

So the energy of two joined systems is the sum of the two energies.

6.2 Some applications

6.2.1 CV the thermal capacity at constant volume

Goal: Quantify the rate of heat δQ
δT , when heating a closed system at constant volume.

Hypotheses: • The number n of moles is constant (closed system), and the thermodynamical variables

are T, P, V ; So ~X = (T, P, V ).
• Isochoric transformation (e.g. bicycle pump, static piston, and we heat), i.e., at all time,

V = V0 (6.4)

so the (thermodynamical) variables left are T, P .

• (We heat and) P depends on T , i.e. ∃P̃V0
∈ C1(R;R) s.t.

P = P̃V0
(T ). (6.5)

Thus the isochoric transformation only depends on the temperature, i.e. is of the type

~γV0
:

{
[T1, T2] → R3

T → ~X = ~γV0(T ) = (T, P̃V0(T ), V0)

}
, so [~γV0

(T )] =

 T
P̃V0

(T )
V0

 . (6.6)

• The only elementary work considered is δW = −P dV . So here δW = 0 (isochoric), thus

dU = δQ along ~γV0
. (6.7)

De�nition 6.2 The thermal capacity per mole at constant volume V = V0 at ~X = ~γV0
(T ) is

CV0
( ~X) :=

1

n
lim

∆T→0

∆Q

∆T
along ~γV0

. (6.8)
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Question: What does it mean? (Q is not a function de�ned at points but at trajectories.)
Answer: The considered thermodynamic transformation is ~γV0

, so

nCV0

(6.7)
= lim

∆T→0

∆U

∆T
along ~γV0

, i.e. nCV0
(~γV0

(T )) = lim
h→0

U(~γV0(T+h))− U(~γV0(T ))

h
, (6.9)

so

nCV0
(~γV0

(T )) =
d(U ◦ ~γV0)

dT
(T ) = dU(~γV0

(T )).~γV0

′(T ) = [dU(~γV0
(T ))].[~γV0

′(T )]. (6.10)

Calculation: [dU ] = ( ∂U∂T
∂U
∂P

∂U
∂V ) and [~γV0

′(T )] =(6.6)

 1
P̃V0
′(T )
0

 give

nCV0
( ~X) =

∂U
∂T

( ~X) +
∂U
∂P

( ~X)P̃V0

′(T ) + 0 at ~X = ~γV0
(t). (6.11)

Thermodynamic notations:

nCV dT = dU along ~γV , and nCV =
∂U

∂T |P,V
+
∂U

∂P |T,V

∂P

∂T |V
along ~γV . (6.12)

And δQ = dU along ~γV0
gives

∫
~γV0

δQ =
∫
~γV0

dU , thus

Q(~γV0
) =

∫ T2

T1

nCV0
(~γV0

(T )) dT (=

∫ T2

T1

dU(~γV0
(T )).~γV0

′(T ) dT = ∆U). (6.13)

6.2.2 CP the thermal capacity at constant pressure

Goal: Quantify the rate of heat δQ
δT , when heating a closed system at constant pressure.

Hypotheses • The number n of moles is constant (closed system), and the thermodynamical variables

are T, P, V ; So ~X = (T, P, V ).
• Isobaric transformation (e.g., bicycle pump, free piston, and we heat), i.e., at all time,

P = P0, (6.14)

so the (thermodynamical) variables left are T, V .

• (We heat and) V depends on T , i.e. ∃V̂P0 ∈ C1(R;R) s.t.

V = V̂P0(T ). (6.15)

Thus the considered thermodynamic transformation is of the type

~γP0 :

{
[T1, T2] → R3

T → ~X = ~γP0
(T ) = (T, P0, V̂P0

(T ))

}
, so [~γP0(T )] =

 T
P0

V̂P0
(T )

 . (6.16)

• The only elementary work considered is δW = −P dV . Thus

dU = δQ− P dV along ~γP0
. (6.17)

De�nition 6.3 CP0
the thermal capacity per mole at constant pressure P = P0 at ~X = ~γP0

(T ) is

CP0
( ~X) :=

1

n
lim

∆T→0

∆Q

∆T
along ~γP0

. (6.18)

Question: What does it mean? (Q is not a function de�ned at points but at trajectories.)
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Answer: Here δQ(~γP0
(T )) =(6.17) dU(~γP0

(T )) + P0 dV̂P0
(T ) along ~γP0

, hence (6.18) means

nCP0
(~γP0

(T )) = lim
∆T→0

U(~γP0(T + ∆T ))− U(~γP0(T )) + P0V̂P0(T + ∆T )− P0V̂P0(T )

∆T
. (6.19)

Thus

nCP0(~γP0(T )) =
d(U ◦ ~γP0)

dT
(T ) + P0 V̂P0

′(T ) = dU(~γP0(T )).~γ ′(T ) + P0 V̂P0

′(T ). (6.20)

Calculation: [dU ] = ( ∂U∂T
∂U
∂P

∂U
∂V ) and ~γP0

′(T ) =(6.16)

 1
0

V̂P0
′(T )

 give, at ~X = ~γP0
(t),

nCP0
( ~X) =

∂U
∂T

( ~X) + 0 +
∂U
∂V

( ~X)V̂P0

′(T ) + P0 V̂P0

′(T ) along ~γP0
. (6.21)

Thermodynamic notations:

nCP dT = dU + P dV along ~γP , and nCP =
∂U
∂T |P,V

+
∂U

∂V |T,P

∂V

∂T |P
+ P

∂V

∂T |P
along ~γP . (6.22)

And δQ = dU + P dV along ~γV0 gives
∫
~γV0

δQ =
∫
~γV0

dU + P dV , thus

Q(~γP0)
(6.18)

=

∫ T2

T1

nCP0(~γP0(T )) dT (=

∫ T2

T1

dU(~γP0(T )).~γ ′(T ) + P0 V̂P0

′(T ) dT = ∆U + P0∆V ). (6.23)

6.2.3 CV vs CP for a perfect gas, and γ = CP
CV

Joule experiment for perfect gas (approximated by �air at very low pressure�). First result: U = U(T, P, V )

is independent of P and V , so ∂U
∂P = ∂U

∂V = 0. Thus, at ~X = (T, P, V ),

nCV ( ~X)
(6.11)

=
∂U
∂T

( ~X), and nCP ( ~X)
(6.21)

=
∂U
∂T

( ~X) + P
∂V̂
∂T

(T, P ). (6.24)

And V = V̂(T, P ) = nRT
P , thus

∂V̂
∂T

(T, P ) =
nR

P
, thus nCP ( ~X) = nCV ( ~X) + nR.

Second result: CV et CP are constant for a perfect gas, i.e. independent of ~X, thus

CP = CV +R. (6.25)

Hence CP > CV : For an increase ∆T of the temperature, the received heat at constant pressure is greater
than the received heat at constant volume.

De�nition 6.4 The adiabatic index (ratio of molar heat capacities) is

γ :=
CP
CV

= 1 +
R

CV
( > 1). (6.26)

(E.g., mono-atomic perfect gas : γ = 5
3 , di-atomic perfect gas : γ = 7

5 .)

6.2.4 Adiabatic transformation and perfect gas: PV γ = constant

De�nition 6.5 A (quasi-static) transformation is adiabatic i� δQ = 0 (no heat exchange, e.g. with
�perfectly� insulated walls).

Observation: Along an adiabatic path neither P or V are constant, but they are linked. How?

Here perfect gas: T = PV
nR = T̃ (P, V ) gives dT̃ (P, V ) = 1

nRV dP + 1
nRP dV , thus (thermodynamic

notations)

nCV dT = nCV (
1

nR
V dP +

1

nR
P dV )

(6.12)
= dU. (6.27)

And along an adiabatic transform dU = 0 − P dV , thus nCV ( 1
nRV dP + 1

nRP dV ) = −P dV ; Thus
(1 + R

CV
)P dV + V dP = 0, thus, with γ =(6.26) 1 + R

CV
,

γ
dV

V
+
dP

P
= 0 along an adiabatic path for a perfect gas. (6.28)

Hence
PV γ = c = constant, along an adiabatic path for a perfect gas. (6.29)
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Exercice 6.6 Give rigorous steps to get (6.29).

Answer. Consider a trajectory t ∈→ [~r(t)] =

 T (t)
P (t)
V (t)

 ∈ R3 s.t. δQ(~r(t)) = 0 for all t (adiabatic). With

T
perfect

=
gas

PV

nR
we have [~r(t)] =

 P (t)V (t)
nR

P (t)
V (t)

, thus [~r ′(t)] =

 1
nR

(
V (t)P ′(t) + P (t)V ′(t)

)
P ′(t)
V ′(t)

. With (perfect gas)

∂U
∂T

(~r(t)) = nCV ,
∂U
∂P

(~r(t)) = 0 = ∂U
∂V

(~r(t)). Thus

dU(~r(t)).~r ′(t) = nCV
1

nR

(
V (t)P ′(t) + P (t)V ′(t)

)
+ 0 + 0 along ~r. (6.30)

And, δW (T, P, V ) = −P dV , i.e. [δW (T, P, V )] = ( 0 0 −P ) (row matrix), thus δW (~r(t)).~r ′(t) = 0 + 0 −
P (t)V ′(t), thus dU = δW (adiabatic) gives dU(~r(t)).~r ′(t) = δW (~r(t)).~r ′(t), hence

CV (
V (t)

R
P ′(t) +

P (t)

R
V ′(t)) = −P (t)V ′(t) along ~r, (6.31)

thus γ V
′(t)
V (t)

+ P ′(t)
P (t)

= 0, thus γ log(V (t)) + log(P (t)) = constant, thus log(P (t)V (t)γ) = constant, along ~r.

6.2.5 Enthalpy, and constant pressure transformation

De�nition 6.7 The enthalpy at a given thermodynamical state is

H := U + PV. (6.32)

Application: Suppose: • The number n of moles is constant (closed system), • the thermodynamical

variables are T, P, V , and • V = V̂(T, P ). Thus the enthalpy function Ĥ : R2 → R is

(H =) Ĥ(T, P ) := U(T, P, V̂(T, P )) + P V̂(T, P ). (6.33)

Hence
(H =) Ĥ(T, P0) = U(T, P0, V̂P0

(T )) + P0V̂P0
(T ) along ~γP0

. (6.34)

Thus

∂Ĥ
∂T

(T, P0) =
∂U
∂T

( ~X) + 0 +
∂U
∂V

( ~X)V̂P0

′(T ) + P0V̂P0

′(T ) at ~X = ~γP0
(T ) = (T, P0, V̂P0

(T ))). (6.35)

Thus

nCP0( ~X)
(6.21)

=
∂Ĥ
∂T

(T, P0) = rate of variation of H along ~γP0 at ~X = ~γP0(T ). (6.36)

Thermodynamical notation: nCP = ∂H
∂T |P .

7 Second principle of thermodynamics

7.1 Introduction: Findings and Clausius and Kelvin postulates

- Heat is transmitted spontaneously from a hot body to a cold body, never the other way around.
- The heat transfer increases with the temperature di�erence.
- Heat cannot be transformed entirely into work.

Example 7.1 • A mass at the end of a spring in a heat-insulated container: Heat is created (air friction
and internal friction in the spring...), but it doesn't spontaneously set the mass in motion.
• Hot water and cold water mix spontaneously to make moderately warm water; But moderately hot

water does not spontaneously give hot water on one side and cold water on the other.
• A gas doesn't compress spontaneously (work must be done).

Clausius postulate: �A cold body receives heat from a hot one�, or �Heat cannot �ow spontaneously
from a cold body to a warm body�, or

A thermodynamic transformation whose only result is to transfer heat from a body at a given
temperature to a body at a higher temperature is impossible.

12



More precisely: Consider a closed isolated system Z made of two sub-systems Z1 and Z2, call T10 and
T20 their (uniform) initial temperatures, consider a (quasi-static) trajectory ~r : t ∈ [t0, t0+h]→ ~X = ~r(t)
where h > 0, and suppose δW = 0. Postulate: If T10 < T20 then the heat Q1 and Q2 received by Z1 and
Z2 satisfy

Q1(~r) > 0 and Q2(~r) < 0. (7.1)

Lord Kelvin (William Thomson) postulate:

In a constant temperature cyclic transformation, no work can be created. (7.2)

7.2 Second principle

Second principle (Clausius): ~X = (T, P, V, n, ...) ∈ Rn being the thermodynamic vector and the
transformations being quasi-static, there exists a function S ∈ C1(Rn;R), called entropy, which is
• a state function,
• extensive,
• for a closed isolated system, S is maximum, and
• with T in Kelvin degree (T > 0),

dS ≥ δQ

T
, (7.3)

i.e. dS( ~X) ≥ δQ( ~X)
T . So

∆S ≥
∫
~r

δQ

T
(=

∫ tf

t0

δQ(~r(t)).~r ′(t)

T (t)
dt)) (7.4)

where ∆S = S(~r(tf ))− S(~r(t0)) and ~r : t ∈ [t0, tf ]→ ~X = ~r(t) ∈ Rn is a trajectory.

Corollary: For a closed trajectory ~r, ∮
~r

δQ

T
≤ 0, (7.5)

since ∆S = 0 (because S is a state function). In particular, for a closed path at constant temperature, a
closed isolated system looses heat (in fact it is the reason for the postulate (7.4)-(7.3)).

Remark 7.2 Any strictly decreasing function f : T → f(T ) enables to de�ne an entropy = f(T ) δQ
(not only f(T ) = 1

T ). But the simple function f(T ) = 1
T chosen by Clausius enables a simple dimensional

analysis, the entropy dimension being Joule.Kelvin−1.

7.3 Reversible transformation

De�nition 7.3 A transformation along a path ~r is reversible i�

dS =
δQ

T
along ~r, i.e. ∆S =

∫
~r

δQ

T
. (7.6)

NB: A reversible transformation does not exist in real life: It can only be approximated.

Example 7.4 δW = −P dV gives δQ = dU + P dV ; Thus for a perfect gas (dU = CV dT ) and a
reversible transformation:

dS =
δQ

T
=
CV
T

dT +
P

T
dV = CV

dT

T
+ nR

dV

V
, thus ∆S = CV log

Tf
T0

+ nR log
Vf
V0

(7.7)

when T0, V0 and Tf , Vf are the initial and �nal temperatures and volumes.

7.4 Some applications

Since U and S are now de�ned, they can also be chosen as thermodynamic variables.

13



7.4.1 U function of S and V

Consider a C1 reversible transformation, so δQ = T dS, and suppose δW = −P dV . Thus

dU = T dS − P dV (thermodynamical notation). (7.8)

Thus it is �natural� to choose S and V as �thermodynamic variables� for U : De�ne U : R2 → R by

dU(S, V ) = T (S, V ) dS − P(S, V ) dV, i.e.
∂U
∂S

(S, V ) = T (S, V ),
∂U
∂V

(S, V ) = −P(S, V ). (7.9)

(So U(T, P, V ) = U(S, V ) at the considered thermodynamic state.) Thermodynamic notations:

∂U

∂S |V
= T,

∂U

∂V |S
= −P. (7.10)

7.4.2 S as a function of U and V

Consider a C1 reversible transformation, so δQ = T dS, and suppose δW = −P dV . Thus (7.8) gives

dS =
1

T
dU +

P

T
dV (thermodynamical notation). (7.11)

Thus it is �natural� to choose U and V as �thermodynamic variables� for S: De�ne S : R2 → R by

dS(U, V ) =
1

T (U, V )
dU +

P(U, V )

T (U, V )
dV, i.e.

∂S
∂U

(U, V ) =
1

T (U, V )
,

∂S
∂V

(U, V ) =
P(U, V )

T (U, V )
. (7.12)

Thermodynamic notations:
∂S

∂U |V
=

1

T
and

∂S

∂V |U
=
P

T
. (7.13)

Remark. Fix V = V0 and write S = S(U, V0) = SV0
(U) and U = U(S, V0) = UV0

(S). So SV0
= UV0

−1

(reversible case): This is a change of variables U ↔ S at constant volume.

7.5 Irreversible transformation and created entropy

De�nition 7.5 An irreversible transformation is a transformation along a path ~r s.t.

(S2 − S1 =) ∆S >

∫
~r

δQ

T
. (7.14)

The elementary created entropy is δScreated = dS − δQ
T , and the created entropy along ~r is∫

~r

δScreated := ∆S −
∫
~r

δQ

T
. (7.15)

8 Enthalpy, free energy, free enthalpy

8.1 Enthalpy H = U + PV with variables S and P

For the enthalpy (H = U + PV at some thermodynamical state cf. (6.33)), choose the thermodynamical

variables to be S and P , i.e. consider the enthalpy function
̂̂H : R2 → R de�ned by

(H =)
̂̂H(S, P ) =

̂̂U(S, P ) + P
̂̂V(S, P ). (8.1)

Proposition 8.1 With δW = −P dV and for a reversible transformation, we have

d
̂̂H(S, P ) =

̂̂T (S, P ) dS +
̂̂V(S, P ) dP, i.e.

∂
̂̂H
∂S

(S, P ) =
̂̂T (S, P ),

∂
̂̂H

∂P
(S, P ) =

̂̂V(S, P ), (8.2)

Thermodynamic notations (reversible transformation):

dH = T dS + V dP, i.e.
∂H

∂S |P
= T,

∂H

∂P |S
= V, (8.3)
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Proof. In (8.1), U =
̂̂U(S, P ) = U(S, V ) = U(S,

̂̂V(S, P )), with T = T (S, V ) = ∂U
∂S (S, V ) and P =

P(S, V ) = − ∂U
∂V (S, V ), cf. (7.9). Thus

∂
̂̂U
∂S

(S, P ) =
∂U
∂S

(S,
̂̂V(S, P )) +

∂U
∂V

(S,
̂̂V(S, P ))

∂
̂̂V
∂S

(S, P ) = T − P ∂
̂̂V
∂S

(S, P ),

∂
̂̂U

∂P
(S, P ) =

∂U
∂V

(S,
̂̂V(S, P ))

∂
̂̂V

∂P
(S, P ) = −P ∂

̂̂V
∂P

(S, P ).

(8.4)

Thus H =(8.1) ̂̂H(S, P ) =
̂̂U(S, P ) + P

̂̂V(S, P ) gives
∂
̂̂H
∂S

(S, P ) =
∂
̂̂U
∂S

(S, P ) + P
∂
̂̂V
∂S

(S, P ) = T =
̂̂T (S, P ),

∂
̂̂H

∂P
(S, P ) =

∂
̂̂U

∂P
(S, P ) +

̂̂V(S, P ) + P
∂
̂̂V

∂P
(S, P ) =

̂̂V(S, P ).

(8.5)

Exercice 8.2 Prove that the change of variable T ↔ S implicitly used to obtain
̂̂H(S, P ) from Ĥ(T, P ),

cf. (6.33), is in fact a Legendre transform.

Answer. U = U(S, V ) =
̂̂U(S, P ) gives US(V ) =

̂̂US(P ) at any given S, so P is necessarily a function of V . In

fact, P =(7.9) − ∂U
∂V

(S, V ) = P(S, V ) = PS(V ), thus

P = −US ′(V ) = the slope of US (up to the sign) (8.6)

which is what the Legendre transform does (when US is strictly convex).

8.2 Free energy F = U − TS (variables T and V )

The free energy F is (at a given thermodynamical state)

F = U − TS, so, formally, dF = dU − T dS − S dT. (8.7)

And with δW = −P dV and a reversible transformation, dU = T dS − P dV , thus

dF = −S dT − P dV, (8.8)

and the �natural� variables are T and V : De�ne the free energy function F̃ : R2 → R by

dF̃ (T, V ) = −S̃(T, V ) dT − P̃(T, V ) dV, i.e.
∂F̃

∂T
(T, V ) = −S̃(T, V ),

∂F̃

∂V
(T, V ) = −P̃(T, V ). (8.9)

Thermodynamic notation (reversible transformation): F = U − TS with

dF = −S dT − P dV, i.e.
∂F

∂T |V
= −S, ∂F

∂V |T
= −P. (8.10)

Interpretation: For a reversible transformation at constant temperature:

dF = 0− P dV = δW at constant temperature, (8.11)

so F is the energy available as work at constant temperature (for a reversible transformation).

Exercice 8.3 With δW = −P dV and a reversible transformation, express F with the Legendre trans-

form S → T = U ′V (S) (slope of UV at S). And get (8.9).

Answer. dU = T dS − P dV , so
dU(S, V ) = T (S, V ) dS − P(S, V ) dV. (8.12)

Thus F = U − TS reads F = F (S, V ) = U(S, V ) − T (S, V )S (value at the considered thermodynamical state),

with F = F̃ (T, V ) = F (S, V ), thus F̃V (T ) = FV (S) at any V : This is a change of variable T ↔ S, given by

T
(7.9)
=

∂U
∂S

(S, V ) = UV ′(S) = slope of UV at S: Legendre transform. (8.13)

Then U = ŨV (T ) = UV (S) gives ŨV (T ) = UV (S̃V (T )). Thus FV = F (S) = F̃V (T ) when T = TV (S) = UV ′(S),

thus FV (S) = F̃V (T ) is a Legendre transform, at any V .
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Then F̃ (T, V ) = Ũ(T, V )− T S̃(T, V ) = U(S(T, V ), V )− T S̃(T, V ) gives
∂F̃

∂T
(T, V ) =

∂U
∂S

(S̃(T, V ), V )
∂S̃
∂T

(T, V )− S̃(T, V )− T ∂S̃
∂T

(T, V )
(8.13)

= −S̃(T, V ),

∂F̃

∂V
(T, V ) =

∂U
∂S

(S̃(T, V ), V )
∂S̃
∂V

(T, V ) +
∂U
∂V

(S̃(T, V ), V )− T ∂S̃
∂V

(T, V )
(8.13)

=
∂U
∂V

(S̃(T, V ), V ).

(8.14)

And P =(7.9) − ∂U
∂V

(S, V ) = P(S, V ) = P(S̃(T, V ), V ) = P̃(T, V ), thus (8.9).

8.3 Free enthalpy G = H − TS (Gibbs energy, variables T and P )

The free enthalpy G is
G := H − TS (= U + PV − TS). (8.15)

With δW = −P dV and a reversible transformation, dU = T dS − P dV , thus (formally)

dG = (T dS − P dV ) + (V dP + P dV )− (S dT + T dS)

= V dP − S dT,
(8.16)

and the �natural� variables are T and P , so

G = Ĝ(T, P )
(8.15)

= Ĥ(T, P )− T Ŝ(T, P ), with
∂Ĝ
∂T

(T, P ) = −Ŝ(T, P ),
∂Ĝ
∂P

(T, P ) = V̂(T, P ). (8.17)

Thermodynamic notation (reversible transformation): G := H − TS with

dG = V dP − S dT, i.e.
∂G

∂T |P
= −S, ∂G

∂P |T
= V. (8.18)

Interpretation. � The free enthalpy is a criterion of spontaneity of a chemical reaction : dG < 0 for a
spontaneous reaction , dG = 0 at equilibrium. �

(See http://forums.futura-sciences.com/chimie/19331-enthalpie-libre.html.)
(See http://biologie.univ-mrs.fr/upload/p290/Cours_thermo.pdf.)

Exercice 8.4 Prove:
∂GT
∂T

= − H
T 2

.

Answer. Let z(T, P ) := G(T,P )
T

, i.e. z(T, P ) = H(S(T,P ),P )
T

− S(T, P ). Hence

∂G
T

∂T
(T, P ) :=

∂z

∂T
(T, P ) = −H(S(T, P ), P )

T 2
+

1

T

∂H

∂S
(S(T, P ), P )

∂S

∂T
(T, P )− ∂S

∂T
(T, P ), (8.19)

with ∂H
∂S

(S(T, P ), P ) = T , cf. (8.2).

9 Gibbs�Duhem equation

The internal energy being extensive, U(λS, λV ) = λU(S, V ), i.e. U is homogeneous of degree 1. Thus the
Euler relation gives, cf. (B.3),

U(S, V ) = S
∂U
∂S

(S, V ) + V
∂U
∂V

(S, V ). (9.1)

Thus, δW = −P dV , a reversible transformation, and ∂U
∂S (S, V ) = T (S, V ) and ∂U

∂V (S, V ) = −P(S, V )
cf. (7.9), give

U(S, V ) = S T (S, V )− V P(S, V ). (9.2)

Thermodynamic notation: U = ST − V P . Thus, formally,

dU = T dS + S dT − P dV − V dP, with dU = T dS − P dV, thus S dT − V dP = 0, (9.3)

which rigorously means
S dT (S, V )− V dP(S, V ) = 0. (9.4)

Thus S
(
∂T
∂S (S, V ) dS+∂T

∂V (S, V ) dV
)
−V
(
∂P
∂S (S, V ) dS+ ∂P

∂V (S, V ) dV
)
= 0, thus S ∂T

∂S (S, V )−V ∂P
∂S (S, V ) =

0 and S ∂T
∂V (S, V )− V ∂P

∂V (S, V ) = 0, that is, with thermodynamic notation (reversible transformation):

S
∂T

∂S |V
− V ∂P

∂S |V
= 0 and S

∂T

∂V |S
− V ∂P

∂V |S
= 0 (Gibbs�Duhem equations). (9.5)
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Appendix

A Composite functions

Proposition A.1 If ~X ∈ C1(Rn;Rm), f ∈ C1(Rm;R) and g = f ◦ ~X ∈ C1(Rn;R), i.e. g(~x) = f( ~X(~x)),
then

dg(~x) = df( ~X(~x)).d ~X(~x), (A.1)

i.e., with Cartesian bases, for all i = 1, ..., n, ~X = (X1, ..., Xm) and ~x = (x1, ..., xn),

∂g

∂xi
(~x) =

m∑
j=1

∂f

∂Xj
( ~X(~x))

∂Xj

∂xi
(~x), (A.2)

or ∂ig(~x) =
∑m
j=1∂jf( ~X(~x))∂iXj(~x) (with unambiguous notation independent of the variable names).

Proof. m = n = 2 for readability, so g(x1, x2) = f(X1(x1, x2), X2(x1, x2)). And

g(x1+h, x2) = f( ~X(x1+h, x2)) = f(X1(x1+h, x2), X2(x1+h, x2))

= f
(
X1(x1, x2) + h

∂X1

∂x1
(x1, x2)+o(h), X2(x1, x2) + h

∂X2

∂x1
(x1, x2)+o(h)

)
(2.2)
= f( ~X(~x))+h df( ~X(~x)).

(∂X1

∂x1
(~x)+o(1),

∂X2

∂x1
(~x)+o(1)

)
+ o(h)

(2.3)
= g(~x) + h

∂f

∂X1
( ~X(~x))

(∂X1

∂x1
(~x)+o(1)

)
+ h

∂f

∂X2
( ~X(~x))

(∂X2

∂x1
(~x)+o(1)

)
+ o(h),

thus g(x1+h,x2)−g(x1,x2)
h −→h→0

∂f
∂X1

( ~X(~x))∂X1

∂x1
(~x) + ∂f

∂X2
( ~X(~x))∂X2

∂x1
(~x).

Exercice A.2 Let f ∈ C1(R2;R). Let g(x, y) := f(λx, λy). Compute ∂g
∂x in terms of ∂f∂x and ∂f

∂y .

Answer. 1- X(x, y) = λx and Y (x, y) = λy give ∂X
∂x

(x, y) = λ = ∂1X(x, y), ∂Y
∂x

(x, y) = 0 = ∂1Y (x, y), ..., thus
∂g

∂x
(x, y) =

∂f

∂X
(λx, λy)λ+ 0

noted
=

∂f

∂(λx)
(λx, λy)λ, and

∂g

∂y
(x, y) = 0 +

∂f

∂Y
(λx, λy)λ

noted
=

∂f

∂(λx)
(λx, λy)λ.

Exercice A.3 Let f ∈ C1(R2;R) and g(x) =
∫ x
t=0

f(x, t) dt (integral which depends on x). Compute g′.

Answer. Here g(x) = F ( ~X(x)) where F (X,Y ) =
∫ Y
t=0

f(X, t) dt; And ∂F
∂X

(X,Y ) =
∫ Y
t=0

∂f
∂X

(X, t) dt and
∂F
∂Y

(X,Y ) = f(X,Y ), hence g′(x) =
∫ x
t=0

∂f
∂x

(x, t) dt+ f(x, x).

B Homogeneous function of degree k, Euler theorem

Let Rn+ = {~x = (x1, ..., xn) ∈ Rn : xi ≥ 0, ∀i = 1, ..., n}.

De�nition B.1 f : Rn+ → R is homogeneous of degree (or of order) k ∈ R∗ i�, for all λ > 0 and all
~x ∈ Rn+,

f(λ~x) = λkf(~x), i.e. f(λx1, ..., λxn) = λkf(x1, ..., xn). (B.1)

I.e., the function φ~x : λ ∈ R∗+ → φ~x(λ) = f(λ~x) satis�es φ~x(λ) = λkφ~x(1) (degree k monomial).

Example B.2 n = 2. p, q ∈ R, f(x, y) = xpyq and x, y > 0: Thus f(λx, λy) = λp+qf(x, y), so f is
homogeneous of degree p+q. E.g., f(x, y) =

√
xy and f(x, y) = xy are homogeneous of degree 1 and 2.

g, h : R→ R and f : (x, y) ∈ R∗×R∗ → f(x, y) = axkg( yx )+bykh(xy ): f is homogeneous of degree k.

Theorem B.3 Euler. If f ∈ C1(Rn+;R) is homogeneous of degree k ∈ Rn∗, then

kλk−1f(~x) =

n∑
i=1

xi ∂if(λ~x)
noted

=

n∑
i=1

xi
∂f

∂(λxi)
(λ~x). (B.2)

In particular λ = 1 gives

kf(~x) =

n∑
i=1

xi
∂f

∂xi
(~x). (B.3)

And ∂if =noted ∂f
∂xi

is homogeneous of degree k−1: For all λ > 0, ~x ∈ Rn+ and i = 1, ..., n,

∂if(λ~x) = λk−1∂if(~x), written
∂f

∂(λxi)
(λ~x) = λk−1 ∂f

∂xi
(~x). (B.4)
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Proof. Fix ~x, and let φ(λ) := f(λ~x) = f(λx1, ..., λxn). So φ(λ) = f( ~X(λ)) = f(X1(λ), ..., Xn(λ)) where
Xi(λ) = λxi. Thus

φ′(λ) =

n∑
i=1

∂f

∂Xi
(λ~x)X ′i(λ) =

n∑
i=1

∂f

∂Xi
(λ~x)xi.

And φ(λ) = λkφ(1), thus φ′(λ) = kλk−1φ(1) = kλk−1f(~x), thus
∑n
i=1 xi

∂f
∂Xi

(λ~x) = kλk−1f(~x).

Then �x x2, ..., xn. Let h(x) = f(λx, λx2, ..., λxn), so = λkf(x, x2, ..., xn), thus

(h′(x) =) λ
∂f

∂X1
(λx, λx2, ..., λxn) = λk

∂f

∂X1
(x, x2, ..., xn),

Then simplify by λ and take x = x1. Idem with x2, x3, ....

C Cyclic equalities

C.1 With two linked variables: ∂x
∂y

∂y
∂x

= 1

Hypothesis: 2 variables x, y are linked, i.e. we have an implicit equation

Z(x, y) = 0. (C.1)

Proposition C.1 If Z ∈ C1(R2;R) with ∂Z
∂x (x, y) 6= 0 and ∂Z

∂y (x, y) 6= 0, then ∃f1, f2 ∈ C2(R;R) s.t.

f ′1(f2(x)).f ′2(x) = 1, written
df1

dy
(y)

df2

dx
(x) = 1, written

dx

dy

dy

dx
= 1. (C.2)

Proof. Apply the implicit function theorem (since Z is C1 with ∂Z
∂x (x, y) 6= 0 and ∂Z

∂y (x, y) 6= 0 for all

x, y): The functions f1 et f2 exist, are C1, and x = (f1 ◦ f2)(x), thus 1 = f ′1(f2(x))f ′2(x).

Example C.2 Perfect gas with n = n0 and V = V0 �xed : Z(T, P ) = PV0 − n0RT = 0. Thus
T = f1(P ) = V0

n0R
P , and P = f2(T ) = n0R

V0
T . And (f1(f2(T )) = V0

n0R
(n0R
V0
T ) = T as wished. And

∂Z
∂T (T, P ) = n0R 6= 0 and ∂Z

∂P (T, P ) = V0 6= 0. And f ′1(P ) = V
nR and f ′2(T ) = nR

V satisfy f ′1(P )f ′2(T ) = 1,

written dT
dP (P ).dPdT (T ) = 1, or dT

dP .
dP
dT = 1.

Generalization. n ≥ 2 and n variables x, y, z3, ..., zn with

Z(x, y, z3, ..., zn) = 0
noted

= Zz3,...,zn(x, y), (C.3)

where here z3, ..., zn are considered to be parameters: We get

∂f1

∂y
(y, z3, ..., zn)

∂f2

∂x
(x, z3, ..., zn) = 1 when y = f2(x, z3, ..., zn). (C.4)

Thermodynamic notation:
∂x

∂y |z3,...,zn

∂y

∂x |z3,...,zn
= 1. (C.5)

Example C.3 Perfect gas: Z(T, P, V, n) = PV − nRT . Thus T = f1(P, V, n) = V
nRP , and P =

f2(T, V,N) = nR
V T . We check: (f1(f2(T, V, n), V, n) =

nRT
V V

nR = T and ∂T
∂P |V,n

∂P
∂T |V,n = 1.

C.2 With three linked variables: ∂x
∂y

∂y
∂z

∂z
∂x

= −1
Three variables x, y, z are linked, i.e. we have an implicit equation

Z(x, y, z) = 0. (C.6)

Proposition C.4 Let xi = x or y or z. If Z is C1, and ∂Z
∂xi

(x, y, z) 6= 0 for all x, y, z and i, then

∂f1

∂y
(y, z)

∂f2

∂z
(z, x)

∂f3

∂x
(x, y) = −1, written

∂x

∂y |z

∂y

∂z |x

∂z

∂x |y
= −1 (thermo notations). (C.7)

(Circular permutation for the variables.)
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Proof.


Z(f1(y, z), y, z) = 0,

Z(x, f2(z, x), z) = 0,

Z(x, y, f3(x, y)) = 0.

 gives



∂Z

∂x

∂f1

∂y
+
∂Z

∂y
= 0,

∂Z

∂y

∂f2

∂z
+
∂Z

∂z
= 0,

∂Z

∂x
+
∂Z

∂z

∂f3

∂x
= 0,


where the notations have been abusively

lightened for readability. Multiply the �rst equation by ∂f2
∂z and subtract the second equation:

∂Z

∂x

∂f1

∂y

∂f2

∂z
− ∂Z

∂z
= 0,

∂Z

∂x
+
∂Z

∂z

∂f3

∂x
= 0.

Multiply the �rst equation by ∂f3
∂x and add the second equation: ∂Z

∂x
∂f1
∂y

∂f2
∂z

∂f3
∂x + ∂Z

∂x = 0, thus (C.7).

Generalization, n variables x, y, z, t4, ..., tn; Thermodynamic notation:

∂x

∂y |z,u4,...un

∂y

∂z |x,u4,...un

∂z

∂x |y,u4,...un
= −1. (C.8)
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