Notes de cours de l'ISIMA, deuxième année, http://www.isima.fr/~leborgne

Screw theory (torsor theory)
 Vector and pseudo-vector representations, twist, wrench

Gilles Leborgne

July 14, 2023
A screw (also called a torsor) is an antisymmetric vector field in a Euclidean setting. It is called a twist (or a kinematic screw, or a distributor) when it is the velocity field of a rigid body motion, and called a wrench when it is the moment of a force field.

To avoid confusions and misunderstandings, the first paragraphs are devoted to the definitions of vectors, pseudo-vectors, vector products, pseudo-vector products, antisymmetric endomorphisms and their representations.

Contents

1 Dimension 3 vector spaces 2
1.1 The theoretical vector space $\overrightarrow{\mathbb{R}^{3}}$ and the different $\overrightarrow{\mathbb{R}^{3}}$ in mechanics 2
1.1.1 Dimension 3 vector space 2
1.1.2 Our usual affine space \mathbb{R}^{3}, and $\overrightarrow{\mathbb{R}^{3}}$ and Euclidean setting 2
1.1.3 The different $\overrightarrow{\mathbb{R}^{3}}$ in mechanics 2
1.2 The vector product associated with a basis 2
1.3 Determinant associated with a basis 3
1.4 Orientation of a basis 3
1.5 Vector products and determinants 4
1.6 Basic properties 4
2 Antisymmetric endomorphism and the representation vectors 5
2.1 Dimension issue and Euclidean setting 5
2.2 Transpose of an endomorphism 5
2.3 Symmetric and antisymmetric endomorphisms 6
2.4 Antisymmetric endomorphism and the representation vectors 6
2.5 Interpretation ($\pi / 2$ rotation and dilation) 7
3 Antisymmetric matrix and the pseudo-vector representation 7
3.1 The pseudo-vector product 7
3.2 Antisymmetric matrix and the pseudo-vector representation 7
3.3 Pseudo-representation vectors of an antisymmetric endomorphism 8
4 Screw (torsor) 8
4.0 Reminder 8
4.1 Definition 8
4.2 Constant screw 9
4.3 Euclidean setting: Resultant vector and resultant (pseudo-vector) 9
4.4 Central axis 10
4.5 The pitch 11
5 Twist $=$ kinematic torsor $=$ distributor 11
5.1 Definition 11
5.2 Pure rotation 11
6 Wrench = static torsor 12
6.1 Definition 12
6.2 Couple of forces and resulting wrench 12

The notation $g:=f$ means: f being given, g is defined by $g=f$.

1 Dimension 3 vector spaces

1.1 The theoretical vector space $\overrightarrow{\mathbb{R}^{3}}$ and the different $\overrightarrow{\mathbb{R}^{3}}$ in mechanics

1.1.1 Dimension 3 vector space

A dimension 3 real vector space $V=(V,+,$.$) is a theoretical vector space (mathematical model) where$ " + " is an internal operation and "." an external operation s.t. ($V,+$) is a commutative group, and $\lambda . \vec{v} \in V$ for all $\lambda \in \mathbb{R}$ and $\vec{v} \in V$, with the usual distributivity rules (with 1 the unitary element in \mathbb{R}): $1 . \vec{v}=\vec{v}$, $\lambda \cdot(\vec{v}+\vec{w})=\lambda \cdot \vec{v}+\lambda \cdot \vec{w},(\lambda+\mu) \cdot \vec{v}=\lambda \cdot \vec{v}+\mu \cdot \vec{v}$, and $(\lambda \mu) \cdot \vec{v}=\lambda \cdot(\mu \cdot \vec{v})$, for all $\lambda, \mu \in \mathbb{R}$ and $\vec{v}, \vec{w} \in V$.

If a basis $\left(\vec{a}_{i}\right)_{i=1,2,3}=$ noted $\left(\vec{a}_{i}\right)$ in V is chosen, then a vector $\vec{v}=\sum_{i=1}^{3} v_{i} \vec{a}_{i} \in V$ is represented by the column matrix $[\vec{v}]_{\vec{a}}:=\left(\begin{array}{l}v_{1} \\ v_{2} \\ v_{3}\end{array}\right)$. And writing $[\vec{v}]_{\vec{a}}=\left(\begin{array}{c}v_{1} \\ v_{2} \\ v_{3}\end{array}\right)$ means $\vec{v} \in V$ and $\vec{v}=\sum_{i=1}^{3} v_{i} \vec{a}_{i}$. A bilinear form $z(\cdot, \cdot): V \times V \rightarrow \mathbb{R}$ (e.g. a scalar dot product) is represented by the $3 * 3$ matrix $[z]_{\vec{a}}:=\left[z\left(\vec{a}_{i}, \vec{a}_{j}\right)\right]_{\substack{i=1,2,3 \\ j=1,2,3}}={ }^{\text {noted }}\left[z\left(\vec{a}_{i}, \vec{a}_{j}\right)\right]$. Thus, with $\vec{v}=\sum_{i=1}^{3} v_{i} \vec{a}_{i}$ and $\vec{w}=\sum_{i=1}^{3} w_{i} \vec{a}_{i}$ in V, the bilinearity of $z(\cdot, \cdot)$ gives $z(\vec{v}, \vec{w})=\sum_{i, j=1}^{3} v_{i} w_{j} z\left(\vec{a}_{i}, \vec{a}_{j}\right)=[\vec{v}]_{\vec{a}}^{T} \cdot[z]_{\vec{a}} \cdot[\vec{w}]_{\vec{a}}$.

1.1.2 Our usual affine space \mathbb{R}^{3}, and $\overrightarrow{\mathbb{R}^{3}}$ and Euclidean setting

Affine setting: \mathbb{R}^{3} is our usual affine space of points, and $\overrightarrow{\mathbb{R}}^{3}$ is its associated vector space made of the "bi-point" vectors $\overrightarrow{A B}={ }^{\text {noted }} B-A$ for all $A, B \in \mathbb{R}^{3}$, in which case we write $B=A+\overrightarrow{A B}$.

Euclidean setting: Choose a unit of measure of length u, e.g. the metre or the foot, to be able to build a Euclidean basis $\left(\vec{e}_{i}\right)_{i=1,2,3}={ }^{\text {noted }}\left(\vec{e}_{i}\right)$ in $\overrightarrow{\mathbb{R}}^{3}$: The length of each \vec{e}_{i} is 1 in the unit u, and the length of $3 \vec{e}_{i}+4 \vec{e}_{i+1}$ is 5 (Pythagoras orthogonality) in the unit u, for all $i=1,2,3$, where $\vec{e}_{4}:=\vec{e}_{1}$.

The Euclidean dot product $e(\cdot, \cdot): \overrightarrow{\mathbb{R}^{3}} \times \overrightarrow{\mathbb{R}^{3}} \rightarrow \mathbb{R}$ associated to $\left(\vec{e}_{i}\right)$ is the symmetric definite positive bilinear form defined by, for all $\vec{v}=\sum_{i=1}^{3} v_{i} \vec{e}_{i}$ and $\vec{w}=\sum_{i=1}^{3} w_{i} \vec{e}_{i}$ in $\overrightarrow{\mathbb{R}^{3}}$,

$$
\begin{equation*}
e(\vec{v}, \vec{w})=\sum_{i, j=1}^{3} v_{i} w_{i}=[\vec{v}]_{\vec{e}} \vec{e}^{T} \cdot[\vec{w}]_{\vec{e}} \stackrel{\text { noted }}{=}(\vec{v}, \vec{w})_{e} \stackrel{\text { noted }}{=} \vec{v} \cdot \vec{w} \tag{1.1}
\end{equation*}
$$

i.e. defined by $[e]_{\vec{e}}=I$ (identity matrix) (i.e. $e\left(\vec{e}_{i}, \vec{e}_{j}\right)=\delta_{i j}=\left(\vec{e}_{i}, \vec{e}_{j}\right)_{e}=\vec{e}_{i} \cdot \vec{e}_{j}$, for all $i, j=1,2,3$). The associated Euclidean norm $\|\cdot\|_{e}$ is given by $\|\vec{v}\|_{e}:=\sqrt{\vec{v}} \cdot \vec{v}=\sqrt{(\vec{v}, \vec{v})_{e}}\left(=\sum_{i, j=1}^{3} v_{i}^{2}\right.$ when $\left.\vec{v}=\sum_{i=1}^{3} v_{i} \vec{e}_{i}\right)$.

And two vectors $\vec{v}, \vec{w} \in \overrightarrow{\mathbb{R}^{3}}$ are Euclidean orthogonal iff $\vec{v} \cdot \vec{w}=0$.

1.1.3 The different $\overrightarrow{\mathbb{R}^{3}}$ in mechanics

In mechanics we need "a compatible dimension" for a sum to be defined: You don't add velocities with accelerations or with forces or with moments... Thus we define several dimension 3 real vector spaces V corresponding to different dimensions: $V_{v e l}$ for the velocities, $V_{a c c}$ for accelerations, $V_{f o r}$ for the forces, $V_{\text {mom }}$ for moments...

However, when a unit of measure of length u is chosen, and systematically used by all observers, all the dimension 3 spaces using a length are abusively called $\mathbb{R}^{3}: V_{\text {vel }}=$ noted $\overrightarrow{\mathbb{R}^{3}}, V_{a c c}=$ noted $\widetilde{\mathbb{R}^{3}}$, $V_{\text {for }}=$ noted $\overrightarrow{\mathbb{R}^{3}}, V_{\text {mom }}={ }^{\text {noted }} \overrightarrow{\mathbb{R}^{3}} \ldots$ (for operations relative to measures of length). This is the case for calculations relative to screws (torsors).

1.2 The vector product associated with a basis

Definition 1.1 The vector product associated with a basis $\left(\vec{a}_{i}\right)$ in a dimension 3 real vector space V is the bilinear antisymmetric map $\times_{a}(\cdot, \cdot): V \times V \rightarrow V$ defined by, for all $\vec{v}=\sum_{i=1}^{3} v_{i} \vec{a}_{i}$ and $\vec{w}=\sum_{i=1}^{3} w_{i} \vec{a}_{i}$ in V,

$$
\begin{equation*}
\times_{a}(\vec{v}, \vec{w}):=\left(v_{2} w_{3}-v_{3} w_{2}\right) \vec{a}_{1}+\left(v_{3} w_{1}-v_{1} w_{3}\right) \vec{a}_{2}+\left(v_{1} w_{2}-v_{2} w_{1}\right) \vec{a}_{3} \stackrel{\text { noted }}{=} \vec{v} \times_{a} \vec{w}, \tag{1.2}
\end{equation*}
$$

i.e.

$$
\left[\vec{v} \times_{a} \vec{w}\right]_{\vec{a}}:=\left(\begin{array}{c}
v_{2} w_{3}-v_{3} w_{2} \tag{1.3}\\
v_{3} w_{1}-v_{1} w_{3} \\
v_{1} w_{2}-v_{2} w_{1}
\end{array}\right) \stackrel{\text { noted }}{=} \operatorname{det}\left(\left(\begin{array}{ccc}
\vec{a}_{1} & v_{1} & w_{1} \\
\vec{a}_{2} & v_{2} & w_{2} \\
\vec{a}_{3} & v_{3} & w_{3}
\end{array}\right)\right),
$$

the formal determinant being expanded along the first column. ($\vec{v} \times_{a} \vec{w}$ is written $\vec{v} \wedge_{a} \vec{w}$ in French.) In other words, \times_{a} is defined by $\vec{a}_{i} \times_{a} \vec{a}_{i+1}=\vec{a}_{i+2}$ for $i=1,2,3$, where $\vec{a}_{4}:=\vec{a}_{1}$ and $\vec{a}_{5}:=\vec{a}_{2}$.

We immediately check: \times_{a} is indeed bilinear and antisymmetric $\left(\vec{w} \times_{a} \vec{v}=-\vec{v} \times_{a} \vec{w}\right)$.
Exercise 1.2 Define the basis $\left(\vec{b}_{i}\right)$ by $\vec{b}_{1}=-\vec{a}_{1}, \vec{b}_{2}=\vec{a}_{2}, \vec{b}_{3}=\vec{a}_{3}$ (change of orientation, drawing). Prove:

$$
\begin{equation*}
\times_{b}=-\times_{a}, \quad \text { i.e. } \quad \vec{v} \times_{b} \vec{w}=-\vec{v} \times_{a} \vec{w}, \forall \vec{v}, \vec{w} \in V \tag{1.4}
\end{equation*}
$$

(The definition of a vector product is basis dependent.)
Answer. $\vec{b}_{2} \times_{b} \vec{b}_{3}=\vec{b}_{1}=-\vec{a}_{1}=-\vec{a}_{2} \times_{a} \vec{a}_{3}=-\vec{b}_{2} \times_{a} \vec{b}_{3}$, and $\vec{b}_{3} \times_{b} \vec{b}_{1}=\vec{b}_{2}=\vec{a}_{2}=\vec{a}_{3} \times_{a} \vec{a}_{1}=-\vec{b}_{3} \times_{a} \vec{b}_{1}$, and $\vec{b}_{1} \times_{b} \vec{b}_{2}=\vec{b}_{3}=\vec{a}_{3}=\vec{a}_{1} \times_{a} \vec{a}_{2}=-\vec{b}_{1} \times_{a} \vec{b}_{2}$; And \times_{a} and \times_{b} are bilinear antisymmetric, hence (1.4).

Exercise 1.3 Let $(\cdot, \cdot)_{a}={ }^{\text {noted }} \cdot{ }_{a}$. be the dot product associated to $\left(\vec{a}_{i}\right)$, i.e. defined by $\left(\vec{a}_{i}, \vec{a}_{j}\right)_{a}=\delta_{i j}=$ $\vec{a}_{i} \bullet_{a} \vec{a}_{j}$ for all i, j. Check:

$$
\begin{equation*}
\vec{u} \times_{a}\left(\vec{v} \times_{a} \vec{w}\right)=\left(\vec{u} \bullet_{a} \vec{w}\right) \vec{v}-\left(\vec{u} \bullet_{a} \vec{v}\right) \vec{w} . \tag{1.5}
\end{equation*}
$$

Answer. $\left[\vec{u} \times_{a}\left(\vec{v} \times_{a} \vec{w}\right)\right]_{\vec{a}}=\left(\begin{array}{l}u_{2}\left(v_{1} w_{2}-v_{2} w_{1}\right)-u_{3}\left(v_{3} w_{1}-v_{1} w_{3}\right) \\ u_{3}\left(v_{2} w_{3}-v_{3} w_{2}\right)-u_{1}\left(v_{1} w_{2}-v_{2} w_{1}\right) \\ u_{1}\left(v_{3} w_{1}-v_{1} w_{3}\right)-u_{2}\left(v_{2} w_{3}-v_{3} w_{2}\right)\end{array}\right)=\left(\begin{array}{c}\left(\sum_{i=1}^{3} u_{i} w_{i}\right) v_{1}-\left(\sum_{i=1}^{3} u_{i} v_{i}\right) w_{1} \\ \left(\sum_{i=1}^{3} u_{i} w_{i}\right) v_{2}-\left(\sum_{i=1}^{3} u_{i} v_{i}\right) w_{2} \\ \left(\sum_{i=1}^{3} u_{i} w_{i}\right) v_{3}-\left(\sum_{i=1}^{3} u_{i} v_{i}\right) w_{3}\end{array}\right)$

1.3 Determinant associated with a basis

Definition 1.4 The determinant associated with a basis $\left(\vec{a}_{i}\right)$ is the tri-linear alternated form det $t_{\vec{a}}$: $V \times V \times V \rightarrow \mathbb{R}$ defined by

$$
\begin{equation*}
\operatorname{det}_{\vec{a}}\left(\vec{a}_{1}, \vec{a}_{2}, \vec{a}_{3}\right)=+1 \tag{1.6}
\end{equation*}
$$

i.e. defined by, for all $\vec{u}=\sum_{i=1}^{3} u_{i} \vec{a}_{i}, \vec{v}=\sum_{i=1}^{3} v_{i} \vec{a}_{i}$ and $\vec{w}=\sum_{i=1}^{3} w_{i} \vec{a}_{i}$ in V,

$$
\begin{equation*}
\operatorname{det}_{\vec{a}}(\vec{u}, \vec{v}, \vec{w})=u_{1}\left(v_{2} w_{3}-v_{3} w_{2}\right)+u_{2}\left(v_{3} w_{1}-v_{1} w_{3}\right)+u_{3}\left(v_{1} w_{2}-v_{2} w_{1}\right) \tag{1.7}
\end{equation*}
$$

In other words, with $\operatorname{det}_{M}(\mathcal{A})$ the determinant of a $3 * 3$ matrix \mathcal{A},

$$
\operatorname{det}_{\vec{a}}(\vec{u}, \vec{v}, \vec{w}):=\operatorname{det}_{M}\left([\vec { u }] _ { \vec { a } } \quad \left[\begin{array}{ll}
\vec{v}]_{\vec{a}} & \left.[\vec{w}]_{\vec{a}}\right), \tag{1.8}
\end{array}\right.\right.
$$

Remark: When $\left(\vec{a}_{i}\right)$ is a Euclidean basis, $\operatorname{det}_{\vec{a}}(\vec{u}, \vec{v}, \vec{w})$ is the algebraic volume (or signed volume) of the parallelepiped limited by the three vectors $\vec{u}, \vec{v}, \vec{w}$ (in the chosen unit of measurement used to build the Euclidean basis). And $\left|\operatorname{det}_{\vec{a}}(\vec{u}, \vec{v}, \vec{w})\right|$ is the positive volume (or volume) of the parallelepiped.

Exercise 1.5 Let $\left(\vec{b}_{i}\right)$ be defined by $\vec{b}_{1}=-\vec{a}_{1}, \vec{b}_{2}=\vec{a}_{2}, \vec{b}_{3}=\vec{a}_{3}$ (change of orientation, drawing). Prove: $\operatorname{det}_{\vec{b}}=-\operatorname{det}_{\vec{a}}$ (the definition of a determinant is basis dependent).
Answer. $\operatorname{det}_{\vec{a}}$ and det $\tan _{\vec{b}}$ being tri-linear alternated, $\operatorname{det}_{\vec{b}}\left(\vec{a}_{1}, \vec{a}_{2}, \vec{a}_{3}\right)=\operatorname{det}_{\vec{b}}\left(-\vec{b}_{1}, \vec{b}_{2}, \vec{b}_{3}\right)=-\operatorname{det}_{\vec{b}}\left(\vec{b}_{1}, \vec{b}_{2}, \vec{b}_{3}\right) \stackrel{(1.6)}{=}-1 \stackrel{(1.6)}{=}$ $-\operatorname{det}_{\vec{a}}\left(\vec{a}_{1}, \vec{a}_{2}, \vec{a}_{3}\right)$, thus (tri-linearity) $\operatorname{det}_{\vec{b}}(\vec{u}, \vec{v}, \vec{w})=-\operatorname{det}_{\vec{a}}(\vec{u}, \vec{v}, \vec{w})$ for all $\vec{u}, \vec{v}, \vec{w}$.

1.4 Orientation of a basis

Two bases $\left(\vec{a}_{i}\right)$ and $\left(\vec{b}_{i}\right)$ have the same orientation iff $\operatorname{det}_{\vec{a}}\left(\vec{b}_{1}, \vec{b}_{2}, \vec{b}_{3}\right)>0\left(\right.$ i.e. $\left.\operatorname{iff} \operatorname{det}_{\vec{b}}\left(\vec{a}_{1}, \vec{a}_{2}, \vec{a}_{3}\right)>0\right)$. We then also say that the basis $\left(\vec{b}_{i}\right)$ is positively oriented relatively to the basis $\left(\vec{a}_{i}\right)$.
(Euclidean setting: Right-handed bases are usually declared to be positively oriented.)
In other words, with $P=\left[P_{i j}\right]$ the transition matrix from $\left(\vec{a}_{i}\right)$ to $\left(\vec{b}_{i}\right)$, i.e. with $\left[\vec{b}_{j}\right]_{\vec{e}}=\left(\begin{array}{c}P_{1 j} \\ P_{2 j} \\ P_{3 j}\end{array}\right)$ (the j-th column of P) for all j : Two bases $\left(\vec{a}_{i}\right)$ and $\left(\vec{b}_{i}\right)$ have the same orientation iff $\operatorname{det}_{M}(P)>0$.

1.5 Vector products and determinants

(1.3) and (1.7) immediately give: For all $\vec{u}, \vec{v}, \vec{w} \in V$,

$$
\begin{equation*}
\vec{u} \bullet_{a}\left(\vec{v} \times_{a} \vec{w}\right)=\operatorname{det}_{\vec{a}}(\vec{u}, \vec{v}, \vec{w}) . \tag{1.9}
\end{equation*}
$$

Proposition 1.6 Let $\left(\vec{b}_{i}\right)$ be another $(\cdot, \cdot)_{a}$-orthonormal basis (i.e. $\vec{b}_{i} \mathbf{\bullet}_{a} \vec{b}_{j}=\delta_{i j}$ for all i,j, i.e. $(\cdot, \cdot)_{b}=$ $\left.(\cdot, \cdot)_{a}\right)$. Then

$$
\left\{\begin{array}{l}
\operatorname{det}_{\vec{b}}= \pm \operatorname{det}_{\vec{a}}, \quad \text { i.e. } \quad \operatorname{det}_{\overrightarrow{\vec{b}}}\left(\vec{a}_{1}, \vec{a}_{2}, \vec{a}_{3}\right)= \pm 1, \tag{1.10}\\
\times_{a}= \pm \times_{b}, \quad \text { i.e. } \quad \vec{v} \times_{b} \vec{w}= \pm \vec{v} \times_{a} \vec{w}, \forall \vec{v}, \vec{w} \in V,
\end{array}\right.
$$

with + iff the bases have the same orientation.
Proof. Let $P:=\left(\begin{array}{lll}{\left[\vec{b}_{1}\right]_{\vec{a}}} & {\left[\vec{b}_{2}\right]_{\vec{a}}} & {\left[\vec{b}_{3}\right]_{\vec{a}}}\end{array}\right)$ (the transition matrix from $\left(\vec{a}_{i}\right)$ to $\left.\left(\vec{b}_{i}\right)\right)$. We get

$$
\begin{align*}
\operatorname{det}_{\vec{a}}\left(\vec{b}_{1}, \vec{b}_{2}, \vec{b}_{3}\right) & =\operatorname{det}_{M}\left(\left[\vec{b}_{1}\right]_{\vec{a}},\left[\vec{b}_{2}\right]_{\vec{a}},\left[\vec{b}_{3}\right]_{\vec{a}}\right)=\operatorname{det}_{M}\left(P \cdot\left[\vec{a}_{1}\right]_{\vec{a}}, P \cdot\left[\vec{a}_{2}\right]_{\vec{a}}, P \cdot\left[\vec{a}_{3}\right]_{\vec{a}}\right) \\
& =\operatorname{det}_{M}(P) \operatorname{det}_{M}\left(\left[\vec{a}_{1}\right]_{a},\left[\vec{a}_{2}\right]_{\vec{a}},\left[\vec{a}_{3}\right]_{\vec{a}}\right)=\operatorname{det}_{M}(P) \operatorname{det}_{M}(I)=\operatorname{det}_{M}(P) \tag{1.11}\\
& =\operatorname{det}_{M}(P) \operatorname{det}_{\vec{b}}\left(\vec{b}_{1}, \vec{b}_{2}, \vec{b}_{3}\right) .
\end{align*}
$$

And $\operatorname{det}_{M}(P)= \pm 1$ with + iff the bases have the same orientation. Thus (1.10).
Thus $\left(\vec{v} \times_{b} \vec{w}\right) \bullet_{b} \vec{z}=\operatorname{det}_{\vec{b}}(\vec{v}, \vec{w}, \vec{z})= \pm \operatorname{det}_{\vec{a}}(\vec{v}, \vec{w}, \vec{z})= \pm\left(\vec{v} \times_{a} \vec{w}\right) \bullet_{a} \vec{z}= \pm\left(\vec{v} \times_{a} \vec{w}\right) \bullet_{b} \vec{z}$ for all \vec{z} (since $(\cdot, \cdot)_{b}=(\cdot, \cdot)_{a}$), thus $\vec{v} \times_{b} \vec{w}= \pm \vec{v} \times_{a} \vec{w}$, with + iff the bases have the same orientation. Thus (1.10).

Exercise 1.7 Let $\left(\vec{e}_{i}\right)$ be a basis in V. Prove that $\vec{v} \times_{e} \vec{w}$ is a "contravariant vector", i.e. satisfies the change of basis formula $\left[\vec{v} \times_{e} \vec{w}\right]_{\text {new }}=P^{-1} .\left[\vec{v} \times_{e} \vec{w}\right]_{\text {old }}$.
Answer. First proof: By definition a vector in V is called a contravariant vector, and $\vec{v} \times_{e} \vec{w}$ is in V, thus $\vec{v} \times_{e} \vec{w}$ is contravariant.

Second proof (verification of the change of basis formla): Let $\left(\vec{a}_{i}\right)$ be the old basis and $\left(\vec{b}_{i}\right)$ be the new basis, and let $P=P_{i j}$ be the transition matrix from $\left(\vec{a}_{i}\right)$ to $\left(\vec{b}_{i}\right)$, i.e. defined by $\vec{b}_{j}=\sum_{i} P_{i j} \vec{a}_{i}$ for all j. And let $g(\cdot, \cdot)$ be a scalar dot product (a symmetric definite positive bilinear form on V). The change of basis formulas give $[\vec{v}]_{\vec{b}}=P^{-1} .[\vec{v}]_{a}$ for all $\vec{v} \in V$, and $[g]_{\vec{b}}=P^{T} .[g]_{\vec{a}} . P$. And, for all $\vec{u}, \vec{v}, \vec{w} \in V$, on the one hand $g\left(\vec{u}, \vec{v} \times \times_{e} \vec{w}\right)=[\vec{u}]_{\vec{a}}^{T} \cdot[g]_{\vec{a}} \cdot\left[\vec{v} \times_{e} \vec{w}\right]_{\vec{a}}$, and on the other hand

$$
g\left(\vec{u}, \vec{v} \times_{e} \vec{w}\right)=[\vec{u}]_{\vec{b}}^{T} \cdot[g]_{\vec{b}} \cdot[\vec{v} \times e \vec{w}]_{\vec{b}}=\left([\vec{u}]_{\vec{a}}^{T} \cdot P^{-T}\right) \cdot\left(P^{T} \cdot[g]_{\vec{a}} \cdot P\right) \cdot[\vec{v} \times e \vec{w}]_{\vec{b}}=[\vec{u}]_{\vec{a}}^{T} \cdot[g]_{\vec{a}} \cdot P \cdot[\vec{v} \times e \vec{w}]_{\vec{b}},
$$

hence $\left[\vec{v} \times_{e} \vec{w}\right]_{\vec{a}}=P .\left[\vec{v} \times_{e} \vec{w}\right]_{\vec{b}}$, i.e. $\left[\vec{v} \times_{e} \vec{w}\right]_{\vec{b}}=P^{-1} \cdot\left[\vec{v} \times_{e} \vec{w}\right]_{\vec{a}}$: It is the change of basis formula for vectors.
Third proof: $\vec{v} \times_{e} \vec{w}$ can also be defined with the Riesz representation theorem: The $(\cdot, \cdot)_{e}$-Riesz representation vector of the linear form $\ell_{e \vec{v} \vec{w}}: \vec{z} \rightarrow \ell_{e \vec{v} \vec{w}}(\vec{z})=\operatorname{det}(\vec{v}, \vec{w}, \vec{z})$ is the vector $\vec{\ell}_{e \vec{v} \vec{w}}$ defined by $\ell_{e \vec{v} \vec{w}} \cdot \vec{z}=\left(\vec{\ell}_{e \vec{v}} \vec{w}, \vec{z}\right)_{e}$ for all $\vec{z} \in V$, and $\vec{\ell}_{e \vec{v} \vec{w}}={ }^{\text {noted }} \vec{v} \times_{e} \vec{w}$ is contravariant since a Riesz-representation vector is.

Exercise 1.8 Recall: Two distinct Euclidean products $(\cdot, \cdot)_{a}$ and $(\cdot, \cdot)_{b}$ satisfy $(\cdot, \cdot)_{a}=\lambda^{2}(\cdot, \cdot)_{b}$ where λ is the ratio of the the unit of measures (e.g. if $(\cdot, \cdot)_{a}$ is built with a metre and $(\cdot, \cdot)_{b}$ is built with a foot then $\lambda=0.3048$). Prove : If $\left(\vec{a}_{i}\right)$ is a $(\cdot, \cdot)_{a}$-orthonormal basis and $\left(\vec{b}_{i}\right)$ is a $(\cdot, \cdot)_{b}$-orthonormal basis, then $\operatorname{det}_{\vec{a}}= \pm \lambda^{3} \operatorname{det}_{\vec{b}}$ and $\times_{a}= \pm \lambda \times_{b}$, with + iff the bases have the same orientation.
Answer. With the transition matrix P from $\left(\vec{a}_{i}\right)$ to $\left(\vec{b}_{i}\right)$, i.e. $P=\left(\left[\vec{b}_{1}\right]_{\vec{a}} \quad\left[\vec{b}_{2}\right]_{\vec{a}} \quad\left[\vec{b}_{3}\right]_{\vec{a}}\right)$, we get $\operatorname{det}_{M}(P)=$ $\operatorname{det}_{\vec{a}}\left(\vec{b}_{1}, \vec{b}_{2}, \vec{b}_{3}\right)= \pm \lambda^{3}$ (ratio of algebraic volumes) $= \pm \lambda^{3} \operatorname{det}_{\vec{b}}\left(\vec{b}_{1}, \vec{b}_{2}, \vec{b}_{3}\right)$, thus $\operatorname{det}_{\vec{a}}= \pm \lambda^{3} \operatorname{det}_{\vec{b}}$, with + iff the bases have the same orientation. Thus $\left(\vec{v} \times_{a} \vec{w}, \vec{z}\right)_{a}=\operatorname{det}_{\vec{a}}(\vec{v}, \vec{w}, \vec{z})= \pm \lambda^{3} \operatorname{det}_{\vec{b}}(\vec{v}, \vec{w}, \vec{z})= \pm \lambda^{3}\left(\vec{v} \times{ }_{b} \vec{w}, \vec{z}\right)_{b}=$ $\pm \lambda^{3} \frac{1}{\lambda^{2}}\left(\vec{v} \times_{b} \vec{w}, \vec{z}\right)_{b}= \pm \lambda\left(\vec{v} \times_{b} \vec{w}, \vec{z}\right)_{b}$, for all $\vec{v}, \vec{w}, \vec{z} \in V$, thus $\vec{v} \times_{a} \vec{w}= \pm \lambda \vec{v} \times_{b} \vec{w}$, for all $\vec{v}, \vec{w} \in V$.

1.6 Basic properties

Proposition 1.9 Let $\left(\vec{a}_{i}\right)$ be a basis in V and $\vec{v}, \vec{w} \in V$. Then:
1- If $\vec{v} \times_{a} \vec{z}=\vec{w} \times_{a} \vec{z}$ for all \vec{z}, then $\vec{v}=\vec{w}$.
2- With $(\cdot, \cdot)_{a}$ the associated dot product, $\vec{v} \times_{a} \vec{w}$ is $(\cdot, \cdot)_{a}$-orthogonal to \vec{v} and to \vec{w}.
3- If \vec{v} is parallel to \vec{w} then $\vec{v} \times_{a} \vec{w}=0$. 3'- If $\vec{v} \times a \vec{w} \neq 0$ then \vec{v} is not parallel to \vec{w}.
4- If \vec{v} is not parallel to \vec{w} then $\vec{v} \times_{a} \vec{w} \neq 0$. 4'- If $\vec{v} \times_{a} \vec{w}=0$ then \vec{v} is parallel to \vec{w}.
5- If \vec{v} is not parallel to \vec{w} then $\left(\vec{v}, \vec{w}, \vec{v} \times_{a} \vec{w}\right)$ has the same orientation than $\left(\vec{a}_{i}\right)$.
6- Euclidean case: $\left\|\vec{v} \times_{a} \vec{w}\right\|_{a}$ is the area or the parallelogram (\vec{v}, \vec{w}) (in the unit chosen for $\left(\vec{a}{ }_{i}\right)$).

Proof. 1- $\vec{v}=\sum_{i} v_{i} \vec{a}_{i}$ and (1.3) give $\left[\vec{v} \times_{a} \vec{a}_{1}\right]_{\vec{a}}=\left(\begin{array}{c}0 \\ v_{3} \\ -v_{2}\end{array}\right)$, similarly $\left[\vec{w} \times{ }_{a} \vec{a}_{1}\right]_{\vec{a}}=\left(\begin{array}{c}0 \\ w_{3} \\ -w_{2}\end{array}\right)$, thus $v_{3}=w_{3}$ and $v_{2}=w_{2}$. Similarly with \vec{a}_{2} wich gives $v_{1}=w_{1}$.

2- With $\operatorname{det}_{\vec{a}}$ the associated determinant, $\left(\vec{v} \times_{a} \vec{w}\right) \bullet_{a} \vec{v}=\operatorname{det}_{\vec{a}}(\vec{v}, \vec{w}, \vec{v})=0$ since $\operatorname{det}_{\vec{a}}$ is alternated, similarly $\left(\vec{v} \times_{a} \vec{w}\right) \cdot \vec{w}=0$.

3- Trivial with (1.3). 3'- Contraposition.
4- If \vec{v} is not parallel to \vec{w} then let $\vec{z} \in V$ s.t. $(\vec{v}, \vec{w}, \vec{z})$ is a basis; Hence, $\operatorname{det}_{\vec{a}}(\vec{v}, \vec{w}, \vec{z}) \neq 0$, thus $\left(\vec{v} \times_{a} \vec{w}\right) \bullet_{a} \vec{z} \neq 0$, thus $\vec{v} \times_{a} \vec{w} \neq \overrightarrow{0}$. 4'- Contraposition.

5- $\operatorname{det}_{\vec{a}}\left(\vec{v}, \vec{w}, \vec{v} \times_{a} \vec{w}\right)={ }^{(1.9)}\left(\vec{v} \times_{a} \vec{w}\right) a_{a}\left(\vec{v} \times_{a} \vec{w}\right)=\left\|\vec{v} \times_{a} \vec{w}\right\|^{2}>0$ since $\vec{v} \sharp \vec{w}$.
6 - If \vec{v} is parallel to \vec{w} then it is trivial (zero area). Otherwise $\vec{v} \times{ }_{a} \vec{w} \neq \overrightarrow{0}$ thus $0 \neq \operatorname{det}_{\vec{a}}\left(\vec{v}, \vec{w}, \frac{\vec{v} \times_{a} \vec{w}}{\left\|\vec{v} x_{a} \vec{w}\right\|_{a}}\right)=$ $\left(\vec{v} \times_{a} \vec{w}\right) \cdot \frac{\vec{v} \times{ }_{a} \vec{w}}{\left\|\vec{v} \times_{a} \vec{w}\right\|_{a}}=\left\|\vec{v} \times_{a} \vec{w}\right\|_{a}=$ volume of the parallelepiped $\left(\vec{v}, \vec{w}, \frac{\vec{v} \times{ }_{a} \vec{w}}{\left\|\vec{v} \times_{a} \vec{w}\right\|_{a}}\right)$ (height 1).

2 Antisymmetric endomorphism and the representation vectors

2.1 Dimension issue and Euclidean setting

Let $\mathcal{L}\left(V_{1}, V_{2}\right)$ be the space of linear maps from a vector space V_{1} to a vector space V_{2}.
Continuing § 1.1. We will have to deal with linear maps $L \in \mathcal{L}\left(\overrightarrow{\mathbb{R}^{3}}, V\right)$ where $\overrightarrow{\mathbb{R}^{3}}$ is the space of bi-point vectors (dimension [length]), and V is the space of velocities (dimension [length]/[time]) or the space of moments (dimension $[$ force $] \times[$ length $]=[$ masse $] \times[\text { length }]^{2} /[\text { time }]^{2}$). Hence the linear map L is not an endomorphism (although $\operatorname{dim}(V)=3$).

However, for quantification, we will use a (Euclidean) basis $\left(\vec{a}_{i}\right) \in \overrightarrow{\mathbb{R}}^{3}$ and a basis $\left(\vec{b}_{i}\right) \in V$ which use the same unit of length (thus $L . \vec{u}$ will give meaningful results); And we will abusively write $L \in \mathcal{L}\left(\overrightarrow{\mathbb{R}^{3}} ; \overrightarrow{\mathbb{R}^{3}}\right)$, instead of $L \in \mathcal{L}\left(\overrightarrow{\mathbb{R}^{3}} ; V\right)$, and we will abusively say that L is an endomorphism.

2.2 Transpose of an endomorphism

Let V be a real vector space and $\mathcal{L}(V ; V)$ be the set of endomorphisms $V \rightarrow V$ (it is a real vector space with the usual internal addition and external multiplication). Usual notation for a linear map: $L(\vec{v})={ }^{\text {noted }} L \cdot \vec{v}$, hence $L \cdot(\vec{v}+\lambda \vec{w})=L \cdot \vec{v}+\lambda L \cdot \vec{w}$ (distributivity notation $=$ linearity).

Definition 2.1 Let $L \in \mathcal{L}(V ; V)$ and let $(\cdot, \cdot)_{g}=. \bullet_{g}$. be a scalar dot product in V. The transposed of L relative to $(\cdot, \cdot)_{g}$ is the linear map $L_{g}^{T} \in \mathcal{L}(V ; V)$ defined by, for all $\vec{v}, \vec{w} \in V$,

$$
\begin{equation*}
\left(L_{g}^{T} \cdot \vec{w}, \vec{v}\right)_{g}=(\vec{w}, L \cdot \vec{v})_{g} \quad\left(=(L \cdot \vec{v}, \vec{w})_{g}\right), \tag{2.1}
\end{equation*}
$$

i.e. $\left(L_{g}^{T} \cdot \vec{w}\right) \bullet_{g} \vec{v}=\vec{w} \bullet_{g}(L . \vec{v})\left(=(L . \vec{v}) \bullet_{g} \vec{w}\right)$.

Matrix representation: Let $\left(\vec{a}_{i}\right)$ be a basis in V. Let $[L]_{\vec{a}}=\left[L_{i j}\right]$ be the matrix of L relative to $\left(\vec{a}_{i}\right)$, and let $\left[L_{g}^{T}\right]_{\vec{a}}=\left[\left(L_{g}^{T}\right)_{i j}\right]=$ the matrix of L_{g}^{T} relative to $\left(\vec{a}_{i}\right)$, i.e., for all j,

$$
\begin{equation*}
L . \vec{a}_{j}=\sum_{i=1}^{3} L_{i j} \vec{a}_{i} \quad \text { and } \quad L_{g}^{T} \cdot \vec{a}_{j}=\sum_{i}\left(L_{g}^{T}\right)_{i j} \vec{a}_{i} . \tag{2.2}
\end{equation*}
$$

Let $[g]_{\vec{a}}$ be the matrix of $(\cdot, \cdot)_{g}$ relative to $\left(\vec{a}_{i}\right)$, i.e. $[g]_{\vec{a}}=\left[\left(\vec{a}_{i}, \vec{a}_{j}\right)_{g}\right] .(2.1)$ gives $[\vec{v}]_{\vec{a}}^{T} \cdot[g]_{\vec{a}} \cdot\left[L_{g}^{T}\right]_{\vec{a}} \cdot[\vec{w}]_{\vec{b}}=$ $[\vec{v}]_{\vec{a}}^{T} \cdot[L]_{\vec{a}}^{T} \cdot[g]_{\vec{a}} \cdot[\vec{w}]_{\vec{a}}$ for all \vec{v}, \vec{w}, thus $[g]_{\vec{a}} \cdot\left[L_{g}^{T}\right]_{\vec{a}}=[L]_{\vec{a}}^{T} \cdot[g]_{\vec{a}}$, i.e.

$$
\begin{equation*}
\left[L_{g}^{T}\right]_{\vec{a}}=[g]_{\vec{a}}^{-1} \cdot[L]_{\vec{a}}^{T} \cdot[g]_{\vec{a}} \tag{2.3}
\end{equation*}
$$

In particular, if $\left(\vec{a}_{i}\right)$ is a $(\cdot, \cdot)_{g}$ orthonormal basis, then $[g]_{\vec{a}}=I$, thus $\left[L_{g}^{T}\right]_{\vec{a}}=[L]_{\vec{a}}^{T}$.
Euclidean setting: Useful result: If $(\cdot, \cdot)_{a}$ and $(\cdot, \cdot)_{b}$ are two Euclidean dot products (e.g. $(\cdot, \cdot)_{a}$ built with a metre and $(\cdot, \cdot)_{b}$ with a foot) then

$$
\begin{equation*}
L_{a}^{T}=L_{b}^{T} \stackrel{\text { noted }}{=} L^{T} \quad \text { (Euclidean setting) } \tag{2.4}
\end{equation*}
$$

Indeed, $\exists \lambda>0$ s.t. $(\cdot, \cdot)_{a}=\lambda^{2}(\cdot, \cdot)_{b}$, thus $\left(L_{a}^{T} \cdot \vec{w}, \vec{v}\right)_{a}=(\vec{w}, L \cdot \vec{v})_{a}=\lambda^{2}(\vec{w}, L \cdot \vec{v})_{b}=\lambda^{2}\left(L_{b}^{T} \cdot \vec{w}, \vec{v}\right)_{b}=$ $\left(L_{b}^{T} \cdot \vec{w}, \vec{v}\right)_{a}$ for all $\vec{v}, \vec{w} \in \overrightarrow{\mathbb{R}^{3}}$. So the transposed of an endomorphism in $\overrightarrow{\mathbb{R}^{3}}$ Euclidean doesn't depend on the unit of measurement (metre, foot,...) used to build a Euclidean basis.

Matrix representation: With $\left(\vec{e}_{i}\right)$ is a $(\cdot, \cdot)_{e}$-Euclidean basis in $V=\overrightarrow{\mathbb{R}^{3}}\left(\right.$ so $\left.[e]_{\vec{e}}=I\right)$:

$$
\begin{equation*}
\left[L^{T}\right]_{\vec{e}}=[L]_{\vec{e}}^{T}, \quad \text { i.e. } \quad\left(L^{T}\right)_{i j}=L_{j i} \forall i, j . \tag{2.5}
\end{equation*}
$$

Exercise 2.2 Check: The transposed map ${ }_{g}^{T}: L \in \mathcal{L}(V ; V) \rightarrow{ }_{g}^{T}(L):=L_{g}^{T} \in \mathcal{L}(V ; V)$ is linear.
Answer. $\left((L+\lambda M)_{g}^{T} \cdot \vec{w}, \vec{v}\right)_{g}=(\vec{w},(L+\lambda M) \cdot \vec{v})_{g}=(\vec{w}, L \cdot \vec{v})_{g}+\lambda(\vec{w}, M \cdot \vec{v})_{g}=\left(L_{g}^{T} \cdot \vec{w}, \vec{v}\right)_{g}+\lambda\left(M_{g}^{T} \cdot \vec{w}, \vec{v}\right)_{g}$ $\left(\left(L_{g}^{T}+\lambda M_{g}^{T}\right) \cdot \vec{w}, \vec{v}\right)_{g}$, for all $\vec{v}, \vec{w} \in V$ and $\lambda \in \mathbb{R}$, gives $(L+\lambda M)_{g}^{T}=L_{g}^{T}+\lambda M_{g}^{T}$.

2.3 Symmetric and antisymmetric endomorphisms

Definition 2.3 Let $L \in \mathcal{L}(V ; V)$ and let $(\cdot, \cdot)_{g}$ be a scalar dot product in V.

- L is $(\cdot, \cdot)_{g}$-symmetric iff $L_{g}^{T}=L$, i.e. $(L \cdot \vec{w}, \vec{v})_{g}=(\vec{w}, L . \vec{v})_{g}, \forall \vec{v}, \vec{w}$,
- L is $(\cdot, \cdot)_{g}$-antisymmetric iff $L_{g}^{T}=-L$, i.e. $(L . \vec{w}, \vec{v})_{g}=-(\vec{w}, L . \vec{v})_{g}, \forall \vec{v}, \vec{w}$.

Proposition 2.4 The space of $(\cdot, \cdot)_{g}$-symmetric endomorphisms is a vector space. The space of $(\cdot, \cdot)_{g^{-}}$ antisymmetric endomorphisms is a vector space.

Proof. $(L+\lambda M)_{g}^{T}=L_{g}^{T}+\lambda M_{g}^{T}=(\pm L)+\lambda(\pm M)= \pm(L+\lambda M)$ with $+\mathrm{iff} L$ and M are $(\cdot, \cdot)_{g}$-symmetric and - iff L and M are antisymmetric. Thus, vector sub-spaces of $\mathcal{L}(V ; V)$.
Euclidean setting: $(\cdot, \cdot)_{g}$ is a Euclidean dot product; With (2.4),

- L is Euclidean-symmetric iff $L^{T}=L$,
- L is Euclidean-antisymmetric iff $L^{T}=-L$.

Hence if $\left(\vec{e}_{i}\right)$ is any euclidean basis (so $[g]_{\vec{e}}=\lambda^{2} I$), (2.3) gives

- L is Euclidean-symmetric iff $\left[L^{T}\right]_{\vec{e}}=[L]_{\vec{e}}$,
- L is Euclidean-antisymmetric iff $\left[L^{T}\right]_{\vec{e}}=-[L]_{\vec{e}}$.

2.4 Antisymmetric endomorphism and the representation vectors

Let $L \in \mathcal{L}\left(\overrightarrow{\mathbb{R}^{3}} ; \overrightarrow{\mathbb{R}^{3}}\right)$. Let $\left(\vec{e}_{i}\right)$ be a Euclidean basis and $(\cdot, \cdot)_{e}$ be the associated Euclidean dot product. Suppose L is $(\cdot, \cdot)_{e}$-antisymmetric: $(2.6)_{2}$ gives $\left(L . \vec{e}_{i}, \vec{e}_{i}\right)_{e}=0$, thus $L_{i i}=0$ for all i, thus $L \cdot \vec{e}_{1}=c \vec{e}_{2}-b \vec{e}_{3}$, $L . \vec{e}_{2}=-c \vec{e}_{1}+a \vec{e}_{3}$ and $L \cdot \vec{e}_{3}=b \vec{e}_{1}-a \vec{e}_{2}$ for some $a, b, c \in \mathbb{R}$. And the vector $\vec{\omega}_{e}:=a \vec{e}_{1}+b \vec{e}_{2}+c \vec{e}_{3} \in \overrightarrow{\mathbb{R}^{3}}$ immediately satisfies

$$
\begin{equation*}
L . \vec{v}=\vec{\omega}_{e} \times_{e} \vec{v} . \tag{2.9}
\end{equation*}
$$

I.e.

$$
[L]_{\vec{e}}=\left(\begin{array}{ccc}
0 & -c & b \tag{2.10}\\
c & 0 & -a \\
-b & a & 0
\end{array}\right) \quad \text { and } \quad\left[\vec{\omega}_{e}\right]_{\vec{e}}:=\left(\begin{array}{l}
a \\
b \\
c
\end{array}\right) \quad \text { give } L \cdot \vec{v}=\vec{\omega}_{e} \times_{e} \vec{v}, \quad \forall \vec{v} \in \overrightarrow{\mathbb{R}^{3}}
$$

NB: The representation vector $\vec{\omega}_{e}$ (of L) is not intrinsic to L, because it depends on the choice of a basis by an observer. See next exercise 2.6.

Definition 2.5 $\vec{\omega}_{e}=a \vec{e}_{1}+b \vec{e}_{2}+c \vec{e}_{3}$ is called the representation vector of the antisymmetric endomorphism L relative to the Euclidean basis $\left(\vec{e}_{i}\right)$.

Exercise 2.6 Let $\left(\vec{z}_{i}\right)$ be another $(\cdot, \cdot)_{e}$-orthonormal basis; Prove: $\vec{\omega}_{z}= \pm \vec{\omega}_{e}$ with + iff the bases have the same orientation. Let $\left(\vec{b}_{i}\right)$ be a basis s.t. $\left(\vec{e}_{i}, \vec{e}_{j}\right)_{e}=\lambda^{2}\left(\vec{b}_{i}, \vec{b}_{j}\right)_{e}$ for some $\lambda>0$ (e.g. $\left(\vec{e}_{i}\right)$ is a Euclidean basis made with the metre and $\left(\vec{b}_{i}\right)$ is a Euclidean basis made with the foot); Prove: $\vec{\omega}_{b}= \pm \lambda \vec{\omega}_{e}$ with + iff the bases have the same orientation.

Answer. (1.10) gives $\times_{z}= \pm \times_{e}$, thus $\vec{\omega}_{e} \times_{e} \vec{v}=L \cdot \vec{v}=\vec{\omega}_{z} \times_{z} \vec{v}= \pm \vec{\omega}_{z} \times_{e} \vec{v}$, for all \vec{v}, thus $\vec{\omega}_{z}= \pm \vec{\omega}_{e}$, with + iff the bases have the same orientation. For (\vec{b}_{i}), apply exercise 1.8.

2.5 Interpretation ($\pi / 2$ rotation and dilation)

Consider (2.9) (or (2.10)), and let $\omega_{e}=\left\|\vec{\omega}_{e}\right\|_{e}=\sqrt{a^{2}+b^{2}+c^{2}}$. Then define the positively oriented Euclidean basis $\left(\vec{b}_{i}\right)$ s.t. $\vec{b}_{3}:=\frac{\vec{\omega}_{e}}{\omega_{e}}$. We get (direct calculation see exercise 2.7)

$$
[L]_{\vec{b}}=\omega_{e}\left(\begin{array}{ccc}
0 & -1 & 0 \tag{2.11}\\
1 & 0 & 0 \\
0 & 0 & 0
\end{array}\right)=\omega_{e}\left(\begin{array}{ccc}
0 & -\sin \left(\frac{\pi}{2}\right) & 0 \\
\sin \left(\frac{\pi}{2}\right) & 0 & 0 \\
0 & 0 & 0
\end{array}\right), \quad\left[\vec{\omega}_{e}\right]_{\vec{b}}=\omega_{e}\left(\begin{array}{l}
0 \\
0 \\
1
\end{array}\right)
$$

So $L . \vec{v}$ rotates a vector $\vec{v}=v_{1} \vec{b}_{1}+v_{2} \vec{b}_{2} \in \operatorname{Vect}\left\{\vec{b}_{1}, \vec{b}_{2}\right\}$ through an angle $\frac{\pi}{2}$ radians in the plane Vect $\left\{\vec{b}_{1}, \vec{b}_{2}\right\}$ and dilates by a factor ω_{e} (in particular $L \cdot \vec{b}_{1}=\omega_{e} \vec{b}_{2}$ and $L \cdot \vec{b}_{2}=-\omega_{e} \vec{b}_{1}$). And $L \cdot \vec{b}_{3}=\overrightarrow{0}$.
Exercise 2.7 Give a Euclidean basis $\left(\vec{b}_{i}\right)$ s.t. $[L]_{\vec{e}}$ is given by (2.11).
Answer. $\left[\vec{b}_{3}\right]_{\vec{e}}=\frac{1}{\omega_{e}}\left(\begin{array}{l}a \\ b \\ c\end{array}\right)$; Let $\left[\vec{b}_{1}\right]_{\mid \vec{e}}=\frac{1}{\sqrt{a^{2}+b^{2}}}\left(\begin{array}{c}-b \\ a \\ 0\end{array}\right)$, so \vec{b}_{1} is a unit vector $\perp \vec{b}_{3}$. Then choose $\vec{b}_{2}=\vec{b}_{3} \times \vec{b}_{1}$, i.e. $\left[\vec{b}_{2}\right]_{\mid \vec{e}}=\frac{1}{\sqrt{a^{2}+b^{2}}} \frac{1}{\omega_{e}}\left(\begin{array}{c}-a c \\ -b c \\ a^{2}+b^{2}\end{array}\right)$. Thus $\left(\vec{b}_{i}\right)$ is a direct orthonormal basis. With $P=\left(\begin{array}{lll}{\left[\vec{b}_{1}\right]_{\mid \vec{e}}} & {\left[\vec{b}_{2}\right]_{\mid \vec{e}}} & \left.\left[\vec{b}_{3}\right]_{\mid \vec{e}}\right) \text { the }\end{array}\right.$ transition matrix from $\left(\vec{e}_{i}\right)$ to $\left(\vec{b}_{i}\right)$ we have $[L]_{\mid \vec{b}}=P^{-1} .[L]_{\mid \vec{e}} \cdot P$ (change of basis formula for endomorphisms), with $P^{-1}=P^{T}$ (change of orthonormal basis): We get (2.11).

3 Antisymmetric matrix and the pseudo-vector representation

3.1 The pseudo-vector product

Let $\mathcal{M}_{31}=\left\{\left(\begin{array}{l}v_{1} \\ v_{2} \\ v_{3}\end{array}\right): v_{1}, v_{2}, v_{3} \in \mathbb{R}\right\}$ be the set of real $3 * 1$ column matrices. Let $\left(\begin{array}{l}v_{1} \\ v_{2} \\ v_{3}\end{array}\right)={ }^{\text {noted }}[\vec{v}]$.
Definition 3.1 A column matrix $[\vec{v}] \in \mathcal{M}_{31}$ is also called a pseudo-vector.
Definition 3.2 The pseudo-vector product is the function $\times: \mathcal{M}_{31} \times \mathcal{M}_{31} \rightarrow \mathcal{M}_{31}$ defined by

$$
\times([\vec{v}],[\vec{w}])=\left(\begin{array}{l}
v_{2} w_{3}-v_{3} w_{2} \tag{3.1}\\
v_{3} w_{1}-v_{1} w_{3} \\
v_{1} w_{2}-v_{2} w_{1}
\end{array}\right) \stackrel{\text { noted }}{=}[\vec{v}] \times\left[\vec{w}, \quad \text { when } \quad[\vec{v}]=\left(\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right) \quad \text { and } \quad[\vec{w}]=\left(\begin{array}{l}
w_{1} \\
w_{2} \\
w_{3}
\end{array}\right)\right.
$$

and the column matrix $[\vec{v}] \times[\vec{w}]$ is called the pseudo-vector product of $[\vec{v}]$ and $[\vec{w}]$.
Remark 3.3 \mathcal{M}_{31} being a vector space, the pseudo-vector product $\times \stackrel{\circ}{\times}$ can also be defined to be the vector product $\stackrel{\circ}{\times}:=x_{E}$ in \mathcal{M}_{31}, where $\left(\left[\vec{E}_{i}\right]\right)$ is the canonical basis in \mathcal{M}_{31}, i.e. $\left[\vec{E}_{1}\right]:=\left(\begin{array}{l}1 \\ 0 \\ 0\end{array}\right),\left[\vec{E}_{2}\right]:=\left(\begin{array}{l}0 \\ 1 \\ 0\end{array}\right)$ and $\left[\vec{E}_{3}\right]:=\left(\begin{array}{l}0 \\ 0 \\ 1\end{array}\right)$ (three column matrices), the unit 1 being the neutral element of the multiplication in \mathbb{R}. This unit 1 is not linked to any "unit of measurement": It is theoretical. And a "Euclidean basis" is meaningless in \mathcal{M}_{31}.

3.2 Antisymmetric matrix and the pseudo-vector representation

Let $M \in \mathcal{M}_{33}$ be an antisymmetric matrix, so there exists $a, b, c \in \mathbb{R}$ s.t.

$$
M=\left(\begin{array}{ccc}
0 & -c & b \tag{3.2}\\
c & 0 & -a \\
-b & a & 0
\end{array}\right), \quad \text { and let } \quad \stackrel{\circlearrowleft}{\omega}=\left(\begin{array}{l}
a \\
b \\
c
\end{array}\right)
$$

We immediately get, for all $[\vec{v}] \in \mathcal{M}_{31}$,

$$
\begin{equation*}
M \cdot[\vec{v}]=\stackrel{\circlearrowleft}{\omega} \times[\vec{v}] \text {. } \tag{3.3}
\end{equation*}
$$

The column matrix (the pseudo-vector) $\stackrel{\circlearrowleft}{\omega} \in \mathcal{M}_{31}$ is called the pseudo-vector representation (column matrix representation) of the matrix M.

3.3 Pseudo-representation vectors of an antisymmetric endomorphism

Let $\left(\vec{e}_{i}\right)$ be a Euclidean basis and $(\cdot, \cdot)_{e}$ its associated Euclidean dot product. Let $L \in \mathcal{L}\left(\overrightarrow{\mathbb{R}^{3}} ; \overrightarrow{\mathbb{R}^{3}}\right)$ be $(\cdot, \cdot)_{e}$-antisymmetric. Then (2.9) immediately gives, for all $[\vec{v}] \in \mathcal{M}_{31}$,

$$
\begin{equation*}
[L]_{\vec{e}} \cdot[\vec{v}]=\stackrel{\circlearrowleft}{\omega} \times[\vec{v}] \quad \text { where } \quad \stackrel{\circlearrowleft}{\omega}:=\left[\vec{\omega}_{e}\right]_{\vec{e}} \tag{3.4}
\end{equation*}
$$

and where $\stackrel{\circlearrowleft}{\omega}$ should be written $\stackrel{\circlearrowleft}{\omega}_{e}$ since it depends on the basis $\left(\vec{e}_{i}\right)$ used to define $[L]_{\vec{e}}$ (depends on the chosen unit of measurement used to build the Euclidean basis $\left(\vec{e}_{i}\right)$). The matrix $\stackrel{\circlearrowleft}{\omega}$ is called the pseudo-representation vector of L relative to $\left(\vec{e}_{i}\right)$.

4 Screw (torsor)

4.0 Reminder

- Let $D o m$ be an open set in \mathbb{R}^{3} and let $\vec{u}:\left\{\begin{aligned} D o m & \rightarrow \overrightarrow{\mathbb{R}^{3}} \\ A & \rightarrow \vec{u}(A)\end{aligned}\right\}$ (so Dom is the domain of definition of \vec{u} e.g. the position in space of some material at some time t). The function \vec{u} is differentiable at $A \in D o m$ iff there exists $L_{\vec{u}}(A) \in \mathcal{L}\left(\overrightarrow{\mathbb{R}^{3}} ; \overrightarrow{\mathbb{R}^{3}}\right)$ (linear) s.t. $\vec{u}(B)=\vec{u}(A)+L_{\vec{u}}(A) \cdot \overrightarrow{A B}+o(\|\overrightarrow{A B}\|)$ near A (first order Taylor expansion). In which case $L_{\vec{u}}(A)=^{\text {noted }} d \vec{u}(A)$, called the differential of \vec{u} at A.
- $\vec{u}: D o m \rightarrow \overrightarrow{\mathbb{R}^{3}}$ is affine iff there exists $L_{\vec{u}} \in \mathcal{L}\left(\overrightarrow{\mathbb{R}^{3}} ; \overrightarrow{\mathbb{R}^{3}}\right)$ s.t., for all $A \in D o m$ and B near A,

$$
\begin{equation*}
\vec{u}(B)=\vec{u}(A)+L_{\vec{u}} \cdot \overrightarrow{A B} \tag{4.1}
\end{equation*}
$$

$L_{\vec{u}}$ is called "the associated linear map" with \vec{u}. Thus \vec{u} is differentiable in Dom, and, at any A, its differential $L_{\vec{u}}(A)=d \vec{u}(A)={ }^{\text {noted }} d \vec{u}={ }^{\text {noted }} L_{\vec{u}}$ is independent of A. (Here the first order Taylor expansion reads $\vec{u}(B)=\vec{u}(A)+d \vec{u} \cdot \overrightarrow{A B}+o(\|\overrightarrow{A B}\|)$ with $o(\|\overrightarrow{A B}\|)=0$.)

- A vector field in \mathbb{R}^{3} is a function $\widetilde{\vec{u}}:\left\{\begin{aligned} \operatorname{Dom} & \rightarrow \operatorname{Dom} \times \overrightarrow{\mathbb{R}^{3}} \\ A & \rightarrow \widetilde{\vec{u}}(A):=(A, \vec{u}(A))\end{aligned}\right\}$, the couple $\widetilde{\vec{u}}(A):=(A, \vec{u}(A))$ being a "pointed vector at A ", or "a vector at A ". Drawing: $\vec{u}(A)$ has to be drawn at A, nowhere else. To compare with a vector $\vec{v} \in \overrightarrow{\mathbb{R}^{3}}$ which can be drawn anywhere (also called a free vector).

The sum of two vector fields $\widetilde{\vec{u}}, \overrightarrow{\vec{w}}: D o m \rightarrow \overrightarrow{\mathbb{R}^{3}}$ and the multiplication by a scalar λ are defined by, at any $A \in D o m$,

$$
\begin{equation*}
\widetilde{\vec{u}}(A)+\widetilde{\vec{w}}(A)=(A, \vec{u}(A)+\vec{w}(A)), \quad \text { and } \quad \lambda \widetilde{\vec{u}}(A)=(A, \lambda \vec{u}(A)) \tag{4.2}
\end{equation*}
$$

(usual rules for "vectors at A ").
If there is no ambiguity then, to lighten the notations, $\widetilde{\vec{u}}(A)={ }^{\text {noted }} \vec{u}(A)$ (pointed vector).
The differential of a vector field $\widetilde{\vec{u}}: \operatorname{Dom} \rightarrow \operatorname{Dom} \times \overrightarrow{\mathbb{R}^{3}}$ at a point A is the "field of endomorphisms" $d \widetilde{\vec{u}}: \operatorname{Dom} \rightarrow \operatorname{Dom} \times \mathcal{L}\left(\overrightarrow{\mathbb{R}^{3}} ; \overrightarrow{\mathbb{R}^{3}}\right)$ defined by $\tilde{d} \vec{u}(A)=(A, d \vec{u}(A))$ (an endomorphism at $\left.A\right)$.

- An affine vector field $\tilde{\vec{u}}:\left\{\begin{aligned} \operatorname{Dom} & \rightarrow \operatorname{Dom} \times \overrightarrow{\mathbb{R}^{3}} \\ A & \rightarrow \widetilde{\vec{u}}(A):=(A, \vec{u}(A))\end{aligned}\right\}$ is a vector field s.t. $\vec{u}: \operatorname{Dom} \rightarrow \overrightarrow{\mathbb{R}^{3}}$ is affine.

4.1 Definition

Definition 4.1 A screw (a torsor) is a Euclidean antisymmetric affine vector field, i.e. a function

$$
\widetilde{\vec{u}}:\left\{\begin{align*}
D o m & \rightarrow \operatorname{Dom} \times \overrightarrow{\mathbb{R}^{3}} \tag{4.3}\\
A & \rightarrow \widetilde{\vec{u}}(A):=(A, \vec{u}(A))
\end{align*}\right\} \quad \text { s.t. } \quad \vec{u}: \operatorname{Dom} \times \overrightarrow{\mathbb{R}^{3}} \text { is affine antisymmetric. }
$$

To lighten the notations $\widetilde{\vec{u}}(A)={ }^{\text {noted }} \vec{u}(A)$ (pointed vector at A). So, for all $A, B \in \operatorname{Dom}$:

$$
\begin{equation*}
\vec{u}(B)=\vec{u}(A)+L_{\vec{u}} \cdot \overrightarrow{A B} \quad \text { where } \quad L_{\vec{u}}^{T}=-L_{\vec{u}} \text {. } \tag{4.4}
\end{equation*}
$$

$\vec{u}(A)$ is called the moment of the screw \vec{u} at A (or moment of the torsor \vec{u} at A).
If $\vec{u}=\overrightarrow{0}$ then $\widetilde{\vec{u}}$ is a degenerate screw (a degenerate torsor).

Exercise 4.2 Let \mathcal{S} be the set of the screws $\vec{u}: \operatorname{Dom} \rightarrow \overrightarrow{\mathbb{R}^{3}}$. Prove: \mathcal{S} is a vector space, and the map $\ell:\left\{\begin{array}{l}\mathcal{S} \rightarrow \mathcal{L}\left(\overrightarrow{\mathbb{R}^{3}} ; \overrightarrow{\mathbb{R}^{3}}\right) \\ \vec{u} \rightarrow \ell(\vec{u})=L_{\vec{u}}\end{array}\right\}$ is linear.
Answer. If $\vec{u}_{1}, \vec{u}_{2} \in \mathcal{S}$ and $\lambda \in \mathbb{R}$ then $\vec{u}_{1}+\lambda \vec{u}_{2}$ is affine antisymmetric: Indeed, at $B,\left(\vec{u}_{1}+\lambda \vec{u}_{2}\right)(B)=\vec{u}_{1}(B)+$ $\lambda \vec{u}_{2}(B)=\left(\vec{u}_{1}(A)+L_{\vec{u}_{1}} \cdot \overrightarrow{A B}\right)+\lambda\left(\vec{u}_{2}(A)+L_{\vec{u}_{2}} \cdot \overrightarrow{A B}\right)=\left(\vec{u}_{1}+\lambda \vec{u}_{2}\right)(A)+\left(L_{\vec{u}_{1}}+\lambda L_{\vec{u}_{2}}\right) \cdot \overrightarrow{A B}$ with $L_{\vec{u}_{1}}+\lambda L_{\vec{u}_{2}}$ antisymmetric since $L_{\vec{u}_{1}}$ and $L_{\vec{u}_{2}}$ are; Thus $\vec{u}_{1}+\lambda \vec{u}_{2}$ is affine and $L_{\vec{u}_{1}+\lambda \vec{u}_{2}}=L_{\vec{u}_{1}}+\lambda L_{\vec{u}_{2}}$ is the associated linear function. Thus $\ell\left(\vec{u}_{1}+\lambda \vec{u}_{2}\right)=L_{\vec{u}_{1}+\lambda \vec{u}_{2}}=L_{\vec{u}_{1}}+\lambda L_{\vec{u}_{2}}=\ell\left(\vec{u}_{1}\right)+\lambda \ell\left(\vec{u}_{2}\right)$ (linearity).

4.2 Constant screw

Definition 4.3 A constant screw \vec{u} is a non degenerate screw $(\vec{u} \neq \overrightarrow{0})$ s.t.

$$
\begin{equation*}
\forall A, B \in \operatorname{Dom}, \quad \vec{u}(A)=\vec{u}(B) . \tag{4.5}
\end{equation*}
$$

4.3 Euclidean setting: Resultant vector and resultant (pseudo-vector)

Euclidean setting: Euclidean basis $\left(\vec{e}_{i}\right)$ in $\overrightarrow{\mathbb{R}^{3}}$, associated Euclidean dot product $(\cdot, \cdot)_{e}$ (needed to define the transposed of a linear map), associated vector product \times_{e} (needed to represent an antisymmetric endomorphism with a vector).

Consider a screw $\vec{u}: D o m \rightarrow \mathbb{R}^{3}$, given as in (4.4). With $\left[L_{\vec{u}}\right]_{\vec{e}}=\left(\begin{array}{ccc}0 & -c & b \\ c & 0 & -a \\ -b & a & 0\end{array}\right)$ and $\left[\vec{\omega}_{e}\right]_{\vec{e}}:=$ $\left(\begin{array}{l}a \\ b \\ c\end{array}\right)=\stackrel{\circlearrowleft}{\omega}$, cf. (2.10), we get, for all $A, B \in D o m$,

$$
\begin{equation*}
\vec{u}(B)=\vec{u}(A)+\vec{\omega}_{e} \times_{e} \overrightarrow{A B}, \quad \text { i.e. } \quad[\vec{u}(B)]_{\vec{e}}=[\vec{u}(A)]_{\vec{e}}+\stackrel{\circlearrowleft}{\omega} \times[\overrightarrow{A B}]_{\vec{e}} \tag{4.6}
\end{equation*}
$$

Definition 4.4 The vector $\vec{\omega}_{e} \in \overrightarrow{\mathbb{R}^{3}}$ is the resultant vector of the screw \vec{u} relative to $\left(\vec{e}_{i}\right)$.
The vector reduction elements at $A \in D o m$ are the vectors $\vec{\omega}_{e} \in \overrightarrow{\mathbb{R}^{3}}$ and $\vec{u}(A) \in \overrightarrow{\mathbb{R}^{3}}$, often written as the couple of vectors $\left(\vec{\omega}_{e}, \vec{u}(A)\right)=$ noted $\binom{\vec{\omega}_{e}}{\vec{u}(A)}$ (relative to $\left(\vec{e}_{i}\right)$).

Definition 4.5 The pseudo-vector (the matrix) $\stackrel{\circlearrowleft}{\omega}:=\left[\vec{\omega}_{e}\right]_{\vec{e}}$ is the resultant of the screw \vec{u} relative to $\left(\vec{e}_{i}\right)$.
The reduction elements at $A \in D o m$ are the pseudo-vectors $\stackrel{\circlearrowleft}{\omega}:=\left[\vec{\omega}_{e}\right]_{\vec{e}} \in \mathcal{M}_{31}$ and $[\vec{u}(A)]_{\vec{e}} \in \mathcal{M}_{31}$, often written as the couple of matrices $\left(\stackrel{\circlearrowleft}{\omega},[\vec{u}(A)]_{\vec{e}}\right)={ }^{\text {noted }}\binom{\stackrel{\circlearrowleft}{\omega}}{[\vec{u}(A)]_{\vec{e}}}$ (relative to $\left.\left(\vec{e}_{i}\right)\right)$.

NB: Recall: The representation vector $\vec{\omega}_{e}$ (of $L_{\vec{u}}$) is not intrinsic to $L_{\vec{u}}$, because it depends on the choice of a basis by an observer, cf. exercise 2.6. Thus the pseudo-vector $\stackrel{\circlearrowleft}{\omega}$ is not intrinsic to $L_{\vec{u}}$ either.

Remark 4.6 (4.6) is sometimes abusively written $\vec{u}(B)=\vec{u}(A)+\vec{\omega} \times \overrightarrow{A B}$ (no reference to any basis) which causes misunderstandings and confusions between vectors and pseudo-vectors (matrices).

Exercise 4.7 Let \vec{u} be a screw. For all $\lambda \in \mathbb{R}$ and $A, B \in \mathbb{R}^{3}$, prove:

$$
\begin{equation*}
\vec{u}\left(A+\lambda \vec{\omega}_{e}\right)=\vec{u}(A), \tag{4.7}
\end{equation*}
$$

then

$$
\begin{equation*}
\vec{u}(B) \cdot \vec{\omega}_{e}=\vec{u}(A) \cdot \vec{\omega}_{e}, \quad \text { thus }=\text { constant, called the screw invariant, } \tag{4.8}
\end{equation*}
$$

and $\left(\vec{u}(B) \cdot \frac{\vec{\omega}_{e}}{\left\|\vec{\omega}_{e}\right\|_{e}}\right) \frac{\vec{\omega}_{e}}{\left\|\vec{\omega}_{e}\right\|_{e}}$ is the vector invariant, and

$$
\begin{equation*}
\vec{u}(B) \cdot \overrightarrow{A B}=\vec{u}(A) \cdot \overrightarrow{A B}, \quad \text { called the equi-projectivity property. } \tag{4.9}
\end{equation*}
$$

Answer. $Z=A+\lambda \vec{\omega}_{e}$ gives $\overrightarrow{A Z}=\lambda \vec{\omega}_{e}$, thus $\vec{u}(Z)={ }^{(4.6)} \vec{u}(A)+\vec{\omega}_{e} \times_{e}\left(\lambda \vec{\omega}_{e}\right)=\vec{u}(A)+\overrightarrow{0}$, i.e. (4.7).
Then $\vec{u}(B)={ }^{(4.6)} \vec{u}(A)+\vec{\omega}_{e} \times_{e} \overrightarrow{A B}$ and $\vec{\omega}_{e} \times_{e} \overrightarrow{A B}$ orthogonal to $\vec{\omega}_{e}$ and $\overrightarrow{A B}$ give (4.8)-(4.9).

Exercise 4.8 Choose a basis $\left(\vec{e}_{i}\right)$ (and \mathcal{S} is the set of screws). Let A be fixed and define the function f_{A} : $(\vec{z}, \vec{w}) \in \overrightarrow{\mathbb{R}^{3}} \times_{e} \overrightarrow{\mathbb{R}^{3}} \rightarrow \vec{u}=f_{A}(\vec{z}, \vec{w}) \in \mathcal{S}$ by $f_{A}(\vec{z}, \vec{w})(B):=\vec{z}+\vec{w} \times_{e} \overrightarrow{A B}=\vec{u}(B)$. Prove that f_{A} is linear and bijective (is one-to-one and onto).
Answer. Linearity: $f_{A}\left(\left(\vec{z}_{1}, \vec{w}_{1}\right)+\lambda\left(\vec{z}_{2}, \vec{w}_{2}\right)\right)(B)=f_{A}\left(\vec{z}_{1}+\lambda \vec{z}_{2}, \vec{w}_{1}+\lambda \vec{w}_{2}\right)(B)=\vec{z}_{1}+\lambda \vec{z}_{2}+\left(\vec{w}_{1}+\lambda \vec{w}_{2}\right) \times \overrightarrow{A B}=$ $\vec{z}_{1}+\vec{w}_{1} \times_{e} \overrightarrow{A B}+\lambda\left(\vec{z}_{2}+\vec{w}_{2} \times_{e} \overrightarrow{A B}\right)=\left(f_{A}\left(\vec{z}_{1}, \vec{w}_{1}\right)+\lambda f_{A}\left(\vec{z}_{2}, \vec{w}_{2}\right)\right)(B)$.

One-to-one: $f_{A}(\vec{z}, \vec{w})=0$ iff $\vec{z}+\vec{w} \times_{e} \overrightarrow{A B}=\overrightarrow{0}$ for all B, in particular $B=A$ gives $\vec{z}=\overrightarrow{0}$ and then $\vec{w}=\overrightarrow{0}$.
Onto: Let $\vec{u} \in \mathcal{S}, \vec{u}(B)=\vec{u}(A)+\vec{\omega}_{e} \times_{e} \overrightarrow{A B}$, and take $\vec{z}=\vec{u}(A)$ and $\vec{w}=\vec{\omega}_{e}$.
Exercise 4.9 Choose a basis $\left(\vec{e}_{i}\right)$, write $\times_{e}=\times, \bullet_{e}=\bullet, \vec{\omega}_{e}=\vec{\omega}$. Let $\vec{u}_{1}, \vec{u}_{2} \in \mathcal{S}, \vec{u}_{1}(B)=\vec{u}_{1}(A)+\vec{\omega}_{1} \times \overrightarrow{A B}$ and $\vec{u}_{2}(B)=\vec{u}_{2}(A)+\vec{\omega}_{2} \times \overrightarrow{A B}$. Define the screw $\left\langle\vec{u}_{1}, \vec{u}_{2}\right\rangle$ by $\left\langle\vec{u}_{1}, \vec{u}_{2}\right\rangle(A)=\vec{\omega}_{1} \bullet \vec{u}_{2}(A)+\vec{\omega}_{2} \bullet \vec{u}_{1}(A)$. Prove $\left\langle\vec{u}_{1}, \vec{u}_{2}\right\rangle$ is constant.
Answer. $\vec{\omega}_{1} \cdot \vec{u}_{2}(B)+\vec{\omega}_{2} \cdot \vec{u}_{1}(B)=\vec{\omega}_{1} \bullet\left(\vec{u}_{2}(A)+\vec{\omega}_{2} \times \overrightarrow{A B}\right)+\vec{\omega}_{2} \bullet\left(\vec{u}_{1}(A)+\vec{\omega}_{1} \times \overrightarrow{A B}\right)=\vec{\omega}_{1} \cdot \vec{u}_{2}(A)+\vec{\omega}_{2} \cdot \vec{u}_{1}(A)+$ $\vec{\omega}_{1} \cdot\left(\vec{\omega}_{2} \times \overrightarrow{A B}\right)+\vec{\omega}_{2} \cdot\left(\vec{\omega}_{1} \times \overrightarrow{A B}\right)$, with $\vec{\omega}_{1} \cdot\left(\vec{\omega}_{2} \times \overrightarrow{A B}\right)+\vec{\omega}_{2} \bullet\left(\vec{\omega}_{1} \times \overrightarrow{A B}\right)=\operatorname{det}\left(\vec{\omega}_{1}, \vec{\omega}_{2}, \overrightarrow{A B}\right)+\operatorname{det}_{\vec{e}}\left(\vec{\omega}_{2}, \vec{\omega}_{1}, \overrightarrow{A B}\right)$ hence $=0$, thus $\vec{\omega}_{1} \bullet \vec{u}_{2}(B)+\vec{\omega}_{2} \cdot \vec{u}_{1}(B)=\vec{\omega}_{1} \bullet \vec{u}_{2}(A)+\vec{\omega}_{2} \cdot \vec{u}_{1}(A)$, for all A, B.

4.4 Central axis

Let $\left(\vec{e}_{i}\right)$ be a Euclidean basis. Let $\vec{u}: D o m \rightarrow \overrightarrow{\mathbb{R}^{3}}$ be a screw; \vec{u} being affine, it can be extended to $\vec{u}: \mathbb{R}^{3} \rightarrow \overrightarrow{\mathbb{R}^{3}}$, i.e. the domain of definition $D o m$ of \vec{u} is extended to the whole space \mathbb{R}^{3} (the material is extended with "zero density" to the whole space). Let $L_{\vec{u}}$ be the associated antisymmetric endomorphism and let $\vec{\omega}_{e} \in \overrightarrow{\mathbb{R}^{3}}$ defined by $L_{\vec{u}} .()=\vec{\omega}_{e} \times{ }_{e}()$.
Definition 4.10 The central axis of a non constant screw is the set of central points defined by

$$
\begin{equation*}
\operatorname{Ax}(\vec{u})=\left\{C \in \mathbb{R}^{3}: \vec{u}(C) \| \vec{\omega}_{e}\right\} \tag{4.10}
\end{equation*}
$$

i.e. $\operatorname{Ax}(\vec{u})=\left\{C \in \mathbb{R}^{3}: \exists \lambda \in \mathbb{R}, \vec{u}(C)=\lambda \vec{\omega}_{e}\right\}$.

Proposition 4.11 Let \vec{u} be a non constant screw. Let $O \in \mathbb{R}^{3}$. Define $C_{0}:=O+\frac{1}{\left\|\vec{\omega}_{e}\right\|^{2}} \vec{\omega}_{e} \times \vec{u}(O) \in \mathbb{R}^{3}$, i.e. C_{0} is defined by

$$
\begin{equation*}
\overrightarrow{O C_{0}}=\frac{1}{\left\|\vec{\omega}_{e}\right\|^{2}} \vec{\omega}_{e} \times_{e} \vec{u}(O) \tag{4.11}
\end{equation*}
$$

1- $C_{0} \in \operatorname{Ax}(\vec{u})$, and

$$
\begin{equation*}
\operatorname{Ax}(\vec{u})=C_{0}+\operatorname{Vect}\left\{\vec{\omega}_{e}\right\} \tag{4.12}
\end{equation*}
$$

2- \vec{u} is constant in $\operatorname{Ax}(\vec{u})$.
$3-C \in \operatorname{Ax}(\vec{u})$ iff $C=\arg \min _{A \in \mathbb{R}^{3}}\|\vec{u}(A)\|_{e}$ (i.e. iff $\|\vec{u}(C)\|_{e}=\min _{A \in \mathbb{R}^{3}}\|\vec{u}(A)\|_{e}$).
$3^{\prime}-\|\vec{u}(B)\|_{e}>\|\vec{u}(C)\|_{e}$ for all $C \in \operatorname{Ax}(\vec{u})$ and all $B \notin \operatorname{Ax}(\vec{u})$.
4 - For all $B \in \mathbb{R}^{3}$,

$$
\begin{equation*}
\vec{u}(B)=\vec{u}\left(C_{0}\right)+\vec{\omega}_{e} \times \times_{e} \overrightarrow{C_{0} B} \in \operatorname{Vect}\left\{\vec{\omega}_{e}\right\} \oplus^{\perp} \operatorname{Vect}\left\{\vec{\omega}_{e}\right\}^{\perp} \quad \text { (orthogonal sum). } \tag{4.13}
\end{equation*}
$$

Proof. 1- $\vec{u}\left(C_{0}\right)=\vec{u}(O)+\vec{\omega}_{e} \times_{e} \overrightarrow{O C_{0}}=\vec{u}(O)+\vec{\omega}_{e} \times\left(\frac{1}{\left\|\vec{\omega}_{e}\right\|^{2}} \vec{\omega}_{e} \times \vec{u}(O)\right)=\vec{u}(O)+\frac{1}{\left\|\vec{\omega}_{e}\right\|^{2}}\left(\vec{\omega}_{e} \cdot \vec{u}(O)\right) \vec{\omega}_{e}-$ $\frac{1}{\left\|\vec{\omega}_{e}\right\|^{2}}\left\|\vec{\omega}_{e}\right\|^{2} \vec{u}(O)=\frac{1}{\left\|\vec{\omega}_{e}\right\|^{2}}\left(\vec{\omega}_{e} \cdot \vec{u}(O)\right) \vec{\omega}_{e}$ is parallel to $\vec{\omega}_{e}$, thus $C_{0} \in \operatorname{Ax}(\vec{u})$.

Then $\vec{u}\left(C_{0}+\lambda \vec{\omega}_{e}\right)=\vec{u}\left(C_{0}\right)+\overrightarrow{0}$ for all λ (because $\left.\vec{\omega}_{e} \times_{e} \vec{\omega}_{e}=\overrightarrow{0}\right)$, thus $\operatorname{Ax}(\vec{u}) \supset C_{0}+\operatorname{Vect}\left\{\vec{\omega}_{e}\right\}$.
If $B \notin C_{0}+\operatorname{Vect}\left\{\vec{\omega}_{e}\right\}$, then $\overrightarrow{C_{0} B} \nmid \vec{\omega}_{e}$, i.e. $\vec{\omega}_{e} \times_{e} \overrightarrow{C_{0} B} \neq \overrightarrow{0}$, thus $\vec{u}(B)=\vec{u}\left(C_{0}\right)+\vec{\omega}_{e} \times_{e} \overrightarrow{C_{0} B} \in \operatorname{Vect}\left\{\vec{\omega}_{e}\right\} \oplus^{\perp}$ $\operatorname{Vect}\left\{\vec{\omega}_{e}\right\}^{\perp}$ with $\overrightarrow{0} \neq \vec{\omega}_{e} \times_{e} \overrightarrow{C_{0} B}$, thus $\vec{u}(B) \nVdash \vec{\omega}_{e}$, hence $B \notin \operatorname{Ax}(\vec{u})$. Thus $\operatorname{Ax}(\vec{u})=C_{0}+\operatorname{Vect}\left\{\vec{\omega}_{e}\right\}$.
$2-\vec{u}\left(C_{0}+\lambda \vec{\omega}_{e}\right)=\vec{u}\left(C_{0}\right)+\vec{\omega}_{e} \times_{e}\left(\lambda \vec{\omega}_{e}\right)=\vec{u}\left(C_{0}\right)+\overrightarrow{0}$, thus $\vec{u}(C)=\vec{u}\left(C_{0}\right)$ for all $C \in C_{0}+\operatorname{Vect}\left\{\vec{\omega}_{e}\right\}$.
3- If $B \notin C_{0}+\operatorname{Vect}\left\{\vec{\omega}_{e}\right\}$ then $\|\vec{u}(B)\|_{e}^{2}=\left\|\vec{u}\left(C_{0}\right)+\vec{\omega}_{e} \times_{e} \overrightarrow{C_{0} B}\right\|_{e}^{2}>\left\|\vec{u}\left(C_{0}\right)\right\|_{e}^{2}$ (Pythagoras since $\vec{u}\left(C_{0}\right) \| \vec{\omega}_{e}$ is orthogonal to $\left.\vec{\omega}_{e} \times_{e} \overrightarrow{C_{0} B}\right)$.

4- $\vec{u}(B)={ }^{(4.6)} \vec{u}\left(C_{0}\right)+\vec{\omega}_{e} \times_{e} \overrightarrow{C_{0} B}$ with $\vec{u}\left(C_{0}\right) \| \vec{\omega}_{e}$ and $\vec{\omega}_{e} \times_{e} \overrightarrow{C_{0} B} \perp \vec{\omega}_{e}$.
Exercise 4.12 How was the point C_{0} in (4.11) found?
Answer. If $\vec{u}(O) \| \vec{\omega}_{e}$ then take $C_{0}=O$. Else a drawing encourages to look for a $C_{0}=O+\alpha \vec{\omega}_{e} \times_{e} \vec{u}(O)$ for some $\alpha \in \mathbb{R}$ because $\overrightarrow{O C_{0}}$ is then orthogonal to Vect $\left\{\vec{\omega}_{e}\right\}$. Which gives $\vec{u}\left(C_{0}\right)=\vec{u}(O)+\vec{\omega}_{e} \times_{e} \overrightarrow{O C_{0}}=$ $\vec{u}(O)+\vec{\omega}_{e} \times_{e}\left(\alpha \vec{\omega}_{e} \times_{e} \vec{u}(O)\right)=\vec{u}(O)+\alpha\left(\vec{\omega}_{e} \cdot \vec{u}(O)\right) \vec{\omega}_{e}-\alpha\left\|\vec{\omega}_{e}\right\|^{2} \vec{u}(O)$. Hence we choose $\alpha=\frac{1}{\left\|\vec{w}_{e}\right\|^{2}}$: We get $\vec{u}\left(C_{0}\right)=\frac{1}{\left\|\vec{\omega}_{e}\right\|^{2}}\left(\vec{\omega}_{e} \cdot \vec{u}(O)\right) \vec{\omega}_{e}$ parallel to $\vec{\omega}_{e}$, thus C_{0} is in $\operatorname{Ax}(\vec{u})$: We have obtained (4.11).
Exercise 4.13 Let \vec{u}_{1} and \vec{u}_{2} be two non constant screws s.t. $\vec{\omega}_{e 1}+\vec{\omega}_{e 2} \neq 0$. Find the axis of $\vec{u}:=\vec{u}_{1}+\vec{u}_{2}$.
Answer. $\vec{u}_{1}(B)=\vec{u}_{1}(O)+\vec{\omega}_{e 1} \times_{e} \overrightarrow{O B}$ and $\vec{u}_{2}(B)=\vec{u}_{2}(O)+\vec{\omega}_{e 2} \times_{e} \overrightarrow{O B}$ give $\left(\vec{u}_{1}+\vec{u}_{2}\right)(B)=\left(\vec{u}_{1}(O)+\vec{u}_{2}(O)\right)+$ $\left(\vec{\omega}_{1}+\vec{\omega}_{2}\right) \times_{e} \overrightarrow{O B}$. Thus $\operatorname{Ax}\left(\vec{u}_{1}+\vec{u}_{2}\right)=C+\operatorname{Vect}\left\{\vec{\omega}_{1}+\vec{\omega}_{2}\right\}$ where $C: \stackrel{(4.11)}{=} O+\frac{1}{\left\|\vec{\omega}_{1}+\vec{\omega}_{2}\right\|^{2}}\left(\vec{\omega}_{1}+\vec{\omega}_{2}\right) \times_{e} \vec{u}(O)$.

4.5 The pitch

Let \vec{u} be a non constant screw, i.e. $\vec{u}(B)=\vec{u}(A)+\vec{\omega}_{e} \times_{e} \overrightarrow{A B}$ for all A, B with $\vec{\omega}_{e} \neq \overrightarrow{0}$.
Definition 4.14 The pitch of a \vec{u} is the real $h \in \mathbb{R}$ s.t., for any $C \in \operatorname{Ax}(\vec{u})$,

$$
\begin{equation*}
\vec{u}(C)=h \vec{\omega}_{e}, \quad \text { i.e. } \quad h=\frac{\vec{u}(C) \cdot \vec{\omega}_{e}}{\omega_{e}^{2}} \tag{4.14}
\end{equation*}
$$

5 Twist $=$ kinematic torsor $=$ distributor

5.1 Definition

Definition 5.1 A twist (or kinematic screw or distributor) ${ }^{1}$ is the name of the screw "The Eulerian velocity field of a rigid body".

Details: Let Obj be a rigid body, $P_{O b j}$ its particles, $\widetilde{\Phi}:\left\{\begin{aligned} {\left[t_{0}, T\right] \times O b j } & \rightarrow \mathbb{R}^{3} \\ \left(t, P_{O b j}\right) & \rightarrow p(t)=\widetilde{\Phi}\left(t, P_{O b j}\right)\end{aligned}\right\}$ its motion (where $t_{0}, T \in \mathbb{R}$ and $t_{0}<T$), and $\operatorname{Dom}_{t}=\widetilde{\Phi}(t, O b j) \subset \mathbb{R}^{3}$ its position in \mathbb{R}^{3} at t. Its Eulerian velocity field is the vector field $\vec{v}: \bigcup_{t \in\left[t_{0}, T\right]}\left(\{t\} \times \operatorname{Dom}_{t}\right) \rightarrow \overline{\mathbb{R}^{3}}$ defined by $\vec{v}(t, p(t)):=\frac{\partial \widetilde{\Phi}}{\partial t}\left(t, P_{O b j}\right)$ when $p(t)=\widetilde{\Phi}\left(t, P_{O b j}\right)$.

Fix t and let $\vec{v}(t, p(t))={ }^{\text {noted }} \vec{v}(p)$. Consider a Euclidean basis $\left(\vec{e}_{i}\right)$ and the associated Euclidean dot product $(\cdot, \cdot)_{e}$. The body being rigid, \vec{v} is affine and antisymmetric (is a screw): $\vec{v}(q)=\vec{v}(p)+d \vec{v}(p) . \vec{p} \vec{q}$ with $d \vec{v}(p)$ independent of p and $d \vec{v}+d \vec{v}^{T}=0$. So, with $\vec{\omega}_{e} \in \overrightarrow{\mathbb{R}^{3}}$ given by $d \vec{v} .()=\vec{\omega}_{e} \times_{e}()$, for all $p, q \in \operatorname{Dom}_{t}$,

$$
\begin{equation*}
\vec{v}(q)=\vec{v}(p)+\vec{\omega}_{e} \times_{e} \overrightarrow{p q} . \tag{5.1}
\end{equation*}
$$

$\vec{\omega}_{e}$ is the vector angular velocity, and $\omega_{e}:=\left\|\vec{\omega}_{e}\right\|_{e}$ is the angular velocity.
Then artificially extending the body to infinity with zero density: $\operatorname{Ax}(\vec{v})=\left\{c \in \mathbb{R}^{3}: \vec{v}(c) \| \vec{\omega}_{e}\right\}$ is well defined, and, with $c \in \operatorname{Ax}(\vec{v})$ and $q \in \operatorname{Dom}_{t}, \vec{v}(q)=\vec{v}(c)+\vec{\omega}_{e} \times_{e} \overrightarrow{c q}$ is an orthogonal decomposition of $\vec{v}(q)$ in $\operatorname{Vect}\left\{\vec{\omega}_{e}\right\} \oplus^{\perp} \operatorname{Vect}\left\{\vec{\omega}_{e}\right\}^{\perp}$.

Exercise 5.2 (5.1) gives the "equiprojectivity property": $\vec{v}(p) \cdot \overrightarrow{p q}=\vec{v}(q) \cdot \overrightarrow{p q}$. Prove it starting from $\|\overrightarrow{p(t) q(t)}\|_{e}=$ constant (rigid body) for all particles $P_{O b j}, Q_{O b j} \in O b j$ where $p(t)=\widetilde{\Phi}\left(t, P_{O b j}\right)$ and $q(t)=\widetilde{\Phi}\left(t, Q_{O b j}\right)$.
Answer. Choose a $O \in \mathbb{R}^{3}$. let $p(t)=\widetilde{\Phi}\left(t, P_{O b j}\right)$ and $q(t)=\widetilde{\Phi}\left(t, Q_{O b j}\right)$. Thus $\frac{d}{d t} \overrightarrow{p(t) q(t)}=\frac{d}{d t} \overrightarrow{O q(t)}-\frac{d}{d t} \overrightarrow{O p(t)}=$ $\vec{v}(t, q(t))-\vec{v}(t, p(t))$. And $\|\overrightarrow{p(t) q(t)}\|_{e}^{2}=(\overrightarrow{p(t) q(t)}, \overrightarrow{p(t) q(t)})_{e}=$ constant, thus $\frac{d}{d t}(\overrightarrow{p(t) q(t)}, \overrightarrow{p(t) q(t)})_{e}=0=$ $2\left(\frac{d}{d t} \overrightarrow{p(t) q(t)}, \overrightarrow{p(t) q(t)}\right)_{e}$, thus $\left.0=(\vec{v}(t, q(t))-\vec{v}(t, p(t))), \overrightarrow{p(t) q(t)}\right)_{e}$ (equiprojectivity property).

5.2 Pure rotation

Definition 5.3 A pure rotation is a non constant twist \vec{v} s.t. $\exists c_{0} \in \mathbb{R}^{3}, \vec{v}\left(c_{0}\right)=\overrightarrow{0}$; I.e.

$$
\begin{equation*}
\exists c_{0} \in \mathbb{R}^{3}, \forall q \in \mathbb{R}^{3}, \vec{v}(q)=\vec{\omega}_{e} \times_{e} \overrightarrow{c_{0} q} \quad \text { with } \quad \vec{\omega}_{e} \neq \overrightarrow{0} \tag{5.2}
\end{equation*}
$$

(In which case $\vec{v}(q) \perp \vec{\omega}_{e}$ for all $q \in \mathbb{R}^{3}$ and $\operatorname{Ax}(\vec{v})=c_{0}+\operatorname{Vect}\left\{\vec{\omega}_{e}\right\}$).
Exercise 5.4 Fix $\left(\vec{e}_{i}\right)$, write $\times_{e}=\times$ and $\vec{\omega}_{e}=\vec{\omega}$, let $\vec{v}_{1}(q)=\overrightarrow{\omega_{1}} \times \overrightarrow{c_{1} q}$ and $\vec{v}_{2}(q)=\vec{\omega}_{2} \times \overrightarrow{c_{2} q}$.
1- Suppose $\operatorname{Ax}\left(\vec{v}_{1}\right) \| \operatorname{Ax}\left(\vec{v}_{2}\right)$, axes disjoint, and $\vec{\omega}_{1}+\vec{\omega}_{2} \neq \overrightarrow{0}$. Find $\operatorname{Ax}\left(\vec{v}_{1}+\vec{v}_{2}\right)$ and prove that $\vec{v}_{1}+\vec{v}_{2}$ is a pure rotation.

1'- Suppose $\operatorname{Ax}\left(\vec{v}_{1}\right) \| \operatorname{Ax}\left(\vec{v}_{2}\right)$, axes disjoint, and $\vec{\omega}_{1}+\vec{\omega}_{2}=\overrightarrow{0}$. Prove that $\vec{v}_{1}+\vec{v}_{2}$ is a translation.
2- Suppose $\operatorname{Ax}\left(\vec{v}_{1}\right) \nVdash \operatorname{Ax}\left(\vec{v}_{2}\right)$ and the axes intersect at only one point O. Find $\operatorname{Ax}\left(\vec{v}_{1}+\vec{v}_{2}\right)$, and prove that $\vec{v}_{1}+\vec{v}_{2}$ is a pure rotation.

3- Suppose $\operatorname{Ax}\left(\vec{v}_{1}\right) \nVdash \operatorname{Ax}\left(\vec{v}_{2}\right)$ and the axes don't intersect. Find $\operatorname{Ax}\left(\vec{v}_{1}+\vec{v}_{2}\right)$, and prove that $\vec{v}_{1}+\vec{v}_{2}$ is not a pure rotation. Give a "simple" particular $c_{0} \in \operatorname{Ax}\left(\vec{v}_{1}+\vec{v}_{2}\right)$.

Answer. The notations tells: $c_{1} \in \operatorname{Ax}\left(\vec{v}_{1}\right), c_{2} \in \operatorname{Ax}\left(\vec{v}_{2}\right),\left(\vec{v}_{1}+\vec{v}_{2}\right)(q)=\vec{\omega}_{1} \times \overrightarrow{c_{1} q}+\vec{\omega}_{2} \times \overrightarrow{c_{2} q}$ for all q.

[^0]1- Here $\vec{\omega}_{2}=\lambda \vec{\omega}_{1}$ with $\lambda \neq-1$, thus $\left(\vec{v}_{1}+\vec{v}_{2}\right)(q)=\vec{\omega}_{1} \times\left(\overrightarrow{c_{1} q}+\lambda \overrightarrow{c_{2} q}\right)=(\lambda+1) \vec{\omega}_{1} \times\left(\frac{1}{\lambda+1} \overrightarrow{c_{1} q}+\frac{\lambda}{\lambda+1} \overrightarrow{c_{2} q}\right)$. Hence choose $c_{0} \in \mathbb{R}^{3}$ s.t. $\frac{1}{\lambda+1} \overrightarrow{c_{1} c 0}+\frac{\lambda}{\lambda+1} \overrightarrow{c_{2} c 0}=\overrightarrow{0}$ (barycentric point on the straight line containing c_{1} and c_{2}): We get $\vec{v}\left(c_{0}\right)=\overrightarrow{0}$ and $\operatorname{Ax}\left(\vec{v}_{1}+\vec{v}_{2}\right)=c_{0}+\operatorname{Vect}\left\{\vec{\omega}_{1}+\vec{\omega}_{2}\right\}$. Remark (on barycentric points): We have $\overrightarrow{c_{1} c_{0}}=\frac{1}{\lambda+1} \overrightarrow{c_{1} c_{2}}$, thus c_{0} in between c_{1} and c_{2} iff $0<\frac{1}{\lambda+1}<1$, i.e. iff $\lambda>0$, i.e. iff $\vec{\omega}_{1}$ and $\vec{\omega}_{2}$ have the same orientation.
$1^{\prime}-\left(\vec{v}_{1}+\vec{v}_{2}\right)(q)=\left(\vec{v}_{1}+\vec{v}_{2}\right)(p)+\left(\vec{\omega}_{1}+\vec{\omega}_{2}\right) \times \overrightarrow{p q}=\left(\vec{v}_{1}+\vec{v}_{2}\right)(p)+\overrightarrow{0}$ for all p, q, so $\vec{v}_{1}+\vec{v}_{2}$ is constant; Suppose $\exists q \in \mathbb{R}^{3}$ s.t. $\left(\vec{v}_{1}+\vec{v}_{2}\right)(q)=\overrightarrow{0}$: Hence $\vec{\omega}_{1} \times \overrightarrow{c_{1} q}+\left(-\vec{\omega}_{1}\right) \times \overrightarrow{c_{2} q}=\overrightarrow{0}$, thus $\vec{\omega}_{1} \times \overrightarrow{c_{1} c_{2}}=\overrightarrow{0}$, thus $\vec{\omega}_{1} \| \overrightarrow{c_{1} c_{2}}$, absurd because the axes are parallel and disjoint. Thus $\vec{v}_{1}+\vec{v}_{2} \neq \overrightarrow{0}$.

2- Take $c_{1}=c_{2}=0$, thus $\left(\vec{v}_{1}+\vec{v}_{2}\right)(q)=\left(\vec{\omega}_{1}+\vec{\omega}_{2}\right) \times \overrightarrow{O q}$, thus $\left(\vec{v}_{1}+\vec{v}_{2}\right)(O)=\overrightarrow{0}$ and $\operatorname{Ax}\left(\vec{v}_{1}+\vec{v}_{2}\right)=O+\operatorname{Vect}\left\{\vec{\omega}_{1}+\vec{\omega}_{2}\right\}$.
3 - Here $\vec{\omega}:=\vec{\omega}_{1}+\vec{\omega}_{2} \neq \overrightarrow{0}$ and (4.11) tells that c_{0} defined by $\overrightarrow{c_{1} c \overrightarrow{0}}=\frac{1}{\|\vec{\omega}\|^{2}} \vec{\omega} \times\left(\vec{v}_{1}+\vec{v}_{2}\right)\left(c_{1}\right)=\frac{1}{\|\vec{\omega}\|^{2}} \vec{\omega} \times \vec{v}_{2}\left(c_{1}\right)=$ $\frac{1}{\|\vec{\omega}\|^{2}} \vec{\omega} \times\left(\vec{\omega}_{2} \times \overrightarrow{c_{2} c_{1}}\right)$, i.e.

$$
\begin{equation*}
\overrightarrow{c_{1} c_{0}}=\frac{1}{\|\vec{\omega}\|^{2}}\left(\left(\vec{\omega} \cdot \overrightarrow{c_{2} c_{1}}\right) \vec{\omega}_{2}-\left(\vec{\omega} \cdot \vec{\omega}_{2}\right) \overrightarrow{c_{2} c_{1}}\right) \tag{5.3}
\end{equation*}
$$

is in $\operatorname{Ax}\left(\vec{v}_{1}+\vec{v}_{2}\right)$, so $\operatorname{Ax}\left(\vec{v}_{1}+\vec{v}_{2}\right)=c_{0}+\operatorname{Vect}\left\{\vec{\omega}_{1}+\vec{\omega}_{2}\right\}$.
In particular, choose c_{1} and c_{2} s.t. $\overrightarrow{c_{1} c_{2}} \perp \vec{\omega}_{1}$ and $\perp \vec{\omega}_{2}$, i.e. the segment [c_{1}, c_{2}] is the shortest segment joining $\operatorname{Ax}\left(\vec{v}_{1}\right)$ and $\operatorname{Ax}\left(\vec{v}_{2}\right)$. Thus $\overrightarrow{c_{1} c_{2}} \in \operatorname{Vect}\left\{\vec{\omega}_{1}, \vec{\omega}_{2}\right\}^{\perp}$ and $\overrightarrow{c_{1} c_{2}} \perp \vec{\omega}_{1}+\vec{\omega}_{2}$. Thus

$$
\begin{equation*}
\overrightarrow{c_{1} c 0}=-\frac{\vec{\omega} \bullet \vec{\omega}_{2}}{\|\vec{\omega}\|^{2}} \overrightarrow{c_{2} c_{1}}, \quad \text { and } \quad \overrightarrow{c_{2} c 0}=\overrightarrow{c_{2} c_{1}}+\overrightarrow{c_{1} c_{0}}=\left(1-\frac{\vec{\omega} \bullet \vec{\omega}_{2}}{\|\vec{\omega}\|^{2}}\right) \overrightarrow{c_{2} c_{1}} \tag{5.4}
\end{equation*}
$$

In particular c_{0} is in the straight line containing c_{1}, c_{2}. Thus $\vec{v}_{1}\left(c_{0}\right)=\vec{\omega}_{1} \times \overrightarrow{c_{1} c 0}=-\frac{\vec{\omega} \bullet \vec{\omega}_{2}}{\|\vec{\omega}\|^{2}} \vec{\omega}_{1} \times \overrightarrow{c_{2} c}$, and $\vec{v}_{2}\left(c_{0}\right)=\vec{\omega}_{2} \times \overrightarrow{c_{2} c_{0}}=\left(1-\frac{\vec{\omega} \bullet \vec{\omega}_{2}}{\|\vec{\omega}\|^{2}}\right) \vec{\omega}_{2} \times \overrightarrow{c_{2} c_{1}}$. Thus $\left(\vec{v}_{1}+\vec{v}_{2}\right)\left(c_{0}\right)=\left(-\frac{\vec{\omega} \bullet \bullet}{\|\vec{\omega}\|_{2}} \vec{\omega}_{1}+\left(1-\frac{\vec{\omega} \bullet \bullet \vec{\omega}_{2}}{\|\vec{\omega}\|^{2}}\right) \vec{\omega}_{2}\right) \times \overrightarrow{c_{2} c_{1}}$. And $\vec{\omega}_{1}$ and $\vec{\omega}_{2}$ are independent, thus $\vec{\omega}$ and $\vec{\omega}_{2}$ are independent, thus $\vec{\omega} \bullet \vec{\omega}_{2} \neq 0$ and $\left(-\frac{\vec{\omega} \bullet \bullet \vec{\omega}_{2}}{\|\vec{\omega}\|^{2}} \vec{\omega}_{1}+\left(1-\frac{\vec{\omega} \bullet \vec{\omega}_{2}}{\|\vec{\omega}\| \|^{2}}\right) \vec{\omega}_{2}\right) \neq \overrightarrow{0}$, together with $\left(-\frac{\vec{\omega} \bullet \vec{\omega}_{2}}{\|\vec{\omega}\|^{2}} \vec{\omega}_{1}+\left(1-\frac{\vec{\omega} \bullet \vec{\omega}_{2}}{\|\vec{\omega}\|^{2}}\right) \vec{\omega}_{2}\right) \perp \overrightarrow{c_{2} c_{1}} \neq \overrightarrow{0}$; Thus $\left(\vec{v}_{1}+\vec{v}_{2}\right)\left(c_{0}\right) \neq \overrightarrow{0}$, thus $\vec{v}_{1}+\vec{v}_{2}$ isn't a pure rotation.

Exercise 5.5 Prove: A twist \vec{v} is the sum of a pure rotation and a translation.
Answer. With $\vec{v}(p)=\vec{v}(O)+\vec{\omega}_{e} \times_{e} \overrightarrow{O p}$: Call \vec{v}_{r} the pure rotation defined by $\vec{v}_{r}(p)=\vec{\omega}_{e} \times_{e} \overrightarrow{O p}$ and call \vec{v}_{t} the translation defined by $\vec{v}_{t}(p)=\vec{v}(O)$. We have $\left(\vec{v}_{t}+\vec{v}_{r}\right)(p)=\vec{v}(p)$, for all p, hence $\vec{v}=\vec{v}_{r}+\vec{v}_{t}$.

6 Wrench = static torsor

6.1 Definition

Definition 6.1 A wrench is the name given to a screw \vec{u} when, at some P_{0}, \vec{u} is the moment of a force:

$$
\begin{equation*}
\vec{u}\left(P_{0}\right)=\vec{f}\left(P_{f}\right) \times_{e} \overrightarrow{P_{f} P_{0}} \quad\left(=\overrightarrow{P_{0} P_{f}} \times \vec{f}\left(P_{f}\right)\right) \quad \in \operatorname{Vect}\left\{\vec{f}\left(P_{f}\right), \overrightarrow{P_{f} P_{0}}\right\}^{\perp} \tag{6.1}
\end{equation*}
$$

where $\vec{f}\left(P_{f}\right)$ is the vector force applied at P_{f}.
And the "moment arm" at P_{0} is the distance between the straight line $P_{f}+\operatorname{Vect}\left\{\vec{f}\left(P_{f}\right)\right\}$ and P_{0}, i.e. the distance between P_{0} and its orthogonal projection on $P_{f}+\operatorname{Vect}\left\{\vec{f}\left(P_{f}\right)\right\}$. Drawing.

This definition supposes that the domain of definition of \vec{u} is $\operatorname{Dom}=\left\{P_{0}\right\}$.
First generalization: Dom can be extended to the segment $\left[P_{0}, P_{f}\right]=\left\{P \in \mathbb{R}^{3}: \overrightarrow{P_{0} P}=\alpha \overrightarrow{P_{0} P_{f}}, \alpha \in\right.$ $[0,1]\}$, corresponding to the position of a rigid body like "the wheel nut at P_{0} welded to the wrench used to unscrew it". Thus, for all $P \in\left[P_{0}, P_{f}\right]$,

$$
\begin{equation*}
\vec{u}(P)=\vec{f}\left(P_{f}\right) \times_{e} \overrightarrow{P_{f} P} \quad\left(\in \operatorname{Vect}\left\{\vec{f}\left(P_{f}\right), \overrightarrow{P_{f} P}\right\}^{\perp}\right) \tag{6.2}
\end{equation*}
$$

Here $\vec{u}\left(P_{f}\right)=\overrightarrow{0}$ (the moment arm vanishes).
Second generalization: \vec{u} can be extended to \mathbb{R}^{3} (with \vec{u} supposed affine antisymmetric). Then the resultant is $\vec{f}\left(P_{f}\right)$, and the axis is $P_{f}+\operatorname{Vect}\left\{\vec{f}\left(P_{f}\right)\right\}$

6.2 Couple of forces and resulting wrench

Consider two wrenches given by at P_{0} by $\vec{u}_{1}\left(P_{0}\right)=\vec{f}_{1}\left(P_{f_{1}}\right) \times \overrightarrow{P_{f_{1}} P_{0}}$ and $\vec{u}_{2}\left(P_{f_{2}}\right)=\overrightarrow{f_{2}}\left(P_{f_{2}}\right) \times \overrightarrow{P_{f_{2}} P_{0}}$. Thus, at P_{0},

$$
\begin{equation*}
\left(\vec{u}_{1}+\vec{u}_{2}\right)\left(P_{0}\right)=\overrightarrow{f_{1}}\left(P_{f_{1}}\right) \times e \overrightarrow{P_{f_{1}} P_{0}}+\overrightarrow{f_{2}}\left(P_{f_{2}}\right) \times{ }_{e} \overrightarrow{P_{f_{2}} P_{0}} \stackrel{\text { noted }}{=} \vec{u}\left(P_{0}\right) \tag{6.3}
\end{equation*}
$$

A fundamental example: Suppose that $\vec{f}_{2}\left(P_{f_{2}}\right)=-\overrightarrow{f_{1}}\left(P_{f_{1}}\right)$ and $\overrightarrow{P_{f_{1}} P_{0}}=-\overrightarrow{P_{f_{2}} P_{0}}$ and $\vec{f}_{1}\left(P_{f_{1}}\right) \perp \overrightarrow{P_{f_{1}} P_{0}}$ (drawing: P_{0} is the position of a nut holding a car wheel and $P_{f_{1}}$ and $P_{f_{2}}$ are the ends of a lug wrench used to unscrew the nut). We get "the couple at P_{0} " (expected result, drawing):

$$
\begin{equation*}
\vec{u}\left(P_{0}\right)=2 \vec{f}_{1}\left(P_{f_{1}}\right) \times_{e} \overrightarrow{P_{f_{1}} P_{0}}=\vec{f}_{1}\left(P_{f_{1}}\right) \times_{e}\left(2 \overrightarrow{P_{f_{1} P_{0}}}\right) \quad\left(=\vec{f}_{1}\left(P_{f_{1}}\right) \times_{e} \overrightarrow{P_{f_{1} P_{f_{2}}}}\right) \tag{6.4}
\end{equation*}
$$

First generalization: Dom can be extended to the segment $\left[P_{0}, P_{f}\right]$; We get, at any $P \in\left[P_{f_{1}}, P_{f_{2}}\right]$,

$$
\begin{equation*}
\vec{u}(P)=\vec{f}_{1}\left(P_{f_{1}}\right) \times_{e} \overrightarrow{P_{f_{1}} P}-\vec{f}_{1}\left(P_{f_{1}}\right) \times_{e} \overrightarrow{P_{f_{2}} P}=\vec{f}_{1}\left(P_{f_{1}}\right) \times_{e} \overrightarrow{P_{f_{1} P_{f_{2}}}}=\text { constant. } \tag{6.5}
\end{equation*}
$$

It is independent of P : Indeed the "moment arms" $d\left(P, P_{f_{1}}\right)$ and $d\left(P, P_{f_{2}}\right)$ ("one short and one long") give (6.5). Thus the screw \vec{u} is constant along $\left[P_{f_{1}}, P_{f_{2}}\right]$.

Second generalization: Dom can be extended to \mathbb{R}^{3} : The screw \vec{u} is constant in \mathbb{R}^{3}.

References

[1] Ball, R. S.: The Theory of Screws: A study in the dynamics of a rigid body. Dublin: Hodges, Foster \& Co. (1876)
[2] Carricato M. : https://parrigidwrkshp.sciencesconf.org/data/pages/IFAC2017_parrigid_0 5_Carricato.pdf
[3] Minguzzi M.: A geometrical introduction to screw theory. https://arxiv.org/abs/1201.4497v2

[^0]: ${ }^{1}$ Definition of a twist by R.S. Ball [1]: "A body is said to receive a twist about a screw when it is rotated about the screw, while it is at the same time translated parallel to the screw, through a distance equal to the product of the pitch and the circular measure of the angle of rotation; hence, the canonical form to which the displacement of a rigid body can be reduced is a twist about a screw."

