1 CONTENTS

Notes de cours de l'ISIMA, deuxième année, http://www.isima.fr/~leborgne

Screw theory (torsor theory) Vector and pseudo-vector representations, twist, wrench

Gilles Leborgne

July 14, 2023

A screw (also called a torsor) is an antisymmetric vector field in a Euclidean setting. It is called a twist (or a kinematic screw, or a distributor) when it is the velocity field of a rigid body motion, and called a wrench when it is the moment of a force field.

To avoid confusions and misunderstandings, the first paragraphs are devoted to the definitions of vectors, pseudo-vectors, vector products, pseudo-vector products, antisymmetric endomorphisms and their representations.

Contents

1	Din	nension 3 vector spaces	2
	1.1	The theoretical vector space $\overline{\mathbb{R}^3}$ and the different $\overline{\mathbb{R}^3}$ in mechanics	2
		1.1.1 Dimension 3 vector space	2
		1.1.2 Our usual affine space \mathbb{R}^3 , and $\overline{\mathbb{R}^3}$ and Euclidean setting	2
		1.1.3 The different \mathbb{R}^3 in mechanics	2
	1.2	The vector product associated with a basis	2
	1.3	Determinant associated with a basis	3
	1.4	Orientation of a basis	3
	1.5	Vector products and determinants	4
	1.6	Basic properties	4
2	Ant	isymmetric endomorphism and the representation vectors	5
	2.1	Dimension issue and Euclidean setting	5
	2.2	Transpose of an endomorphism	5
	2.3	Symmetric and antisymmetric endomorphisms	6
	2.4	Antisymmetric endomorphism and the representation vectors	6
	2.5	Interpretation $(\pi/2 \text{ rotation and dilation})$	7
3	Antisymmetric matrix and the pseudo-vector representation		
	3.1	The pseudo-vector product	7
	3.2	Antisymmetric matrix and the pseudo-vector representation	7
	3.3	Pseudo-representation vectors of an antisymmetric endomorphism	8
4	Scre	ew (torsor)	8
	4.0	Reminder	8
	4.1	Definition	8
	4.2	Constant screw	9
	4.3	Euclidean setting: Resultant vector and resultant (pseudo-vector)	9
	4.4		10
	4.5	The pitch	11
5	Twi	$\mathbf{st} = \mathbf{kinematic} \ \mathbf{torsor} = \mathbf{distributor}$	11
	5.1	Definition	11
	5.2	Pure rotation	11
6	Wrench = static torsor 1		
	6.1		12
	6.2		12

1

The notation g := f means: f being given, g is defined by g = f.

1 Dimension 3 vector spaces

The theoretical vector space $\overrightarrow{\mathbb{R}^3}$ and the different $\overrightarrow{\mathbb{R}^3}$ in mechanics 1.1

Dimension 3 vector space

A dimension 3 real vector space V = (V, +, .) is a theoretical vector space (mathematical model) where "+" is an internal operation and "." an external operation s.t. (V,+) is a commutative group, and $\lambda.\vec{v} \in V$ for all $\lambda \in \mathbb{R}$ and $\vec{v} \in V$, with the usual distributivity rules (with 1 the unitary element in \mathbb{R}): $1 \cdot \vec{v} = \vec{v}$, $\lambda.(\vec{v}+\vec{w}) = \lambda.\vec{v} + \lambda.\vec{w}, \ (\lambda+\mu).\vec{v} = \lambda.\vec{v} + \mu.\vec{v}, \ \text{and} \ (\lambda\mu).\vec{v} = \lambda.(\mu.\vec{v}), \ \text{for all} \ \lambda, \mu \in \mathbb{R} \ \text{and} \ \vec{v}, \vec{w} \in V.$

If a basis $(\vec{a}_i)_{i=1,2,3} = ^{\text{noted}} (\vec{a}_i)$ in V is chosen, then a vector $\vec{v} = \sum_{i=1}^3 v_i \vec{a}_i \in V$ is represented by the column matrix $[\vec{v}]_{\vec{a}} := \begin{pmatrix} v_1 \\ v_2 \\ v_3 \end{pmatrix}$. And writing $[\vec{v}]_{\vec{a}} = \begin{pmatrix} v_1 \\ v_2 \\ v_3 \end{pmatrix}$ means $\vec{v} \in V$ and $\vec{v} = \sum_{i=1}^3 v_i \vec{a}_i$. A bilinear form $z(\cdot, \cdot) : V \times V \to \mathbb{R}$ (e.g. a scalar dot product) is represented by the 3*3 matrix $[z]_{\vec{a}} := [z(\vec{a}_i, \vec{a}_j)]_{\substack{i=1,2,3 \\ j=1,2,3}} = ^{\text{noted}} [z(\vec{a}_i, \vec{a}_j)]$. Thus, with $\vec{v} = \sum_{i=1}^3 v_i \vec{a}_i$ and $\vec{w} = \sum_{i=1}^3 w_i \vec{a}_i$ in V, the

bilinearity of $z(\cdot, \cdot)$ gives $z(\vec{v}, \vec{w}) = \sum_{i,j=1}^{3} v_i w_j z(\vec{a}_i, \vec{a}_j) = [\vec{v}]_{\vec{a}}^T . [z]_{\vec{a}} . [\vec{w}]_{\vec{a}}.$

Our usual affine space \mathbb{R}^3 , and $\overrightarrow{\mathbb{R}^3}$ and Euclidean setting

Affine setting: \mathbb{R}^3 is our usual affine space of points, and $\overline{\mathbb{R}^3}$ is its associated vector space made of the "bi-point" vectors $\overline{AB} = ^{\text{noted}} B - A$ for all $A, B \in \mathbb{R}^3$, in which case we write $B = A + \overline{AB}$.

Euclidean setting: Choose a unit of measure of length u, e.g. the metre or the foot, to be able to build a Euclidean basis $(\vec{e_i})_{i=1,2,3} = ^{\text{noted}} (\vec{e_i})$ in \mathbb{R}^3 : The length of each $\vec{e_i}$ is 1 in the unit u, and the length of $3\vec{e_i} + 4\vec{e_{i+1}}$ is 5 (Pythagoras orthogonality) in the unit u, for all i=1,2,3, where $\vec{e_4} := \vec{e_1}$. The Euclidean dot product $e(\cdot, \cdot) : \mathbb{R}^3 \times \mathbb{R}^3 \to \mathbb{R}$ associated to $(\vec{e_i})$ is the symmetric definite positive

bilinear form defined by, for all $\vec{v} = \sum_{i=1}^{3} v_i \vec{e_i}$ and $\vec{w} = \sum_{i=1}^{3} w_i \vec{e_i}$ in \mathbb{R}^3 ,

$$e(\vec{v}, \vec{w}) = \sum_{i,j=1}^{3} v_i w_i = [\vec{v}]_{\vec{e}}^T . [\vec{w}]_{\vec{e}} \stackrel{\text{noted}}{=} (\vec{v}, \vec{w})_e \stackrel{\text{noted}}{=} \vec{v} \cdot \vec{w}, \tag{1.1}$$

i.e. defined by $[e]_{\vec{e}} = I$ (identity matrix) (i.e. $e(\vec{e}_i, \vec{e}_j) = \delta_{ij} = (\vec{e}_i, \vec{e}_j)_e = \vec{e}_i \cdot \vec{e}_j$, for all i, j = 1, 2, 3). The associated Euclidean norm $||.||_e$ is given by $||\vec{v}||_e := \sqrt{\vec{v} \cdot \vec{e}} \vec{v} = \sqrt{(\vec{v}, \vec{v})_e} (= \sum_{i,j=1}^3 v_i^2 \text{ when } \vec{v} = \sum_{i=1}^3 v_i \vec{e}_i)$.

And two vectors $\vec{v}, \vec{w} \in \mathbb{R}^3$ are Euclidean orthogonal iff $\vec{v} \cdot \vec{w} = 0$.

The different $\mathbb{R}^{\overrightarrow{3}}$ in mechanics

In mechanics we need "a compatible dimension" for a sum to be defined: You don't add velocities with accelerations or with forces or with moments... Thus we define several dimension 3 real vector spaces Vcorresponding to different dimensions: V_{vel} for the velocities, V_{acc} for accelerations, V_{for} for the forces,

However, when a unit of measure of length u is chosen, and systematically used by all observers, all the dimension 3 spaces using a length are abusively called \mathbb{R}^3 : $V_{vel} = \text{noted } \mathbb{R}^3$, $V_{acc} = \text{noted } \mathbb{R}^3$, $V_{for} = ^{\text{noted}} \overrightarrow{\mathbb{R}^3}, V_{mom} = ^{\text{noted}} \overrightarrow{\mathbb{R}^3}...$ (for operations relative to measures of length). This is the case for calculations relative to screws (torsors).

1.2The vector product associated with a basis

Definition 1.1 The vector product associated with a basis (\vec{a}_i) in a dimension 3 real vector space V is the bilinear antisymmetric map $\times_a(\cdot,\cdot): V\times V\to V$ defined by, for all $\vec{v}=\sum_{i=1}^3 v_i\vec{a}_i$ and $\vec{w}=\sum_{i=1}^3 w_i\vec{a}_i$ in V,

$$\times_{a}(\vec{v}, \vec{w}) := (v_{2}w_{3} - v_{3}w_{2})\vec{a}_{1} + (v_{3}w_{1} - v_{1}w_{3})\vec{a}_{2} + (v_{1}w_{2} - v_{2}w_{1})\vec{a}_{3} \stackrel{\text{noted}}{=} \vec{v} \times_{a} \vec{w}, \tag{1.2}$$

i.e.

$$[\vec{v} \times_a \vec{w}]_{\vec{a}} := \begin{pmatrix} v_2 w_3 - v_3 w_2 \\ v_3 w_1 - v_1 w_3 \\ v_1 w_2 - v_2 w_1 \end{pmatrix} \stackrel{\text{noted}}{=} \det \begin{pmatrix} \vec{a}_1 & v_1 & w_1 \\ \vec{a}_2 & v_2 & w_2 \\ \vec{a}_3 & v_3 & w_3 \end{pmatrix}),$$
 (1.3)

the formal determinant being expanded along the first column. $(\vec{v} \times_a \vec{w} \text{ is written } \vec{v} \wedge_a \vec{w} \text{ in French.})$ In other words, \times_a is defined by $\vec{a}_i \times_a \vec{a}_{i+1} = \vec{a}_{i+2}$ for i = 1, 2, 3, where $\vec{a}_4 := \vec{a}_1$ and $\vec{a}_5 := \vec{a}_2$.

We immediately check: \times_a is indeed bilinear and antisymmetric $(\vec{w} \times_a \vec{v} = -\vec{v} \times_a \vec{w})$.

Exercise 1.2 Define the basis (\vec{b}_i) by $\vec{b}_1 = -\vec{a}_1$, $\vec{b}_2 = \vec{a}_2$, $\vec{b}_3 = \vec{a}_3$ (change of orientation, drawing). Prove:

$$\times_b = -\times_a$$
, i.e. $\vec{v} \times_b \vec{w} = -\vec{v} \times_a \vec{w}$, $\forall \vec{v}, \vec{w} \in V$. (1.4)

(The definition of a vector product is basis dependent.)

Answer. $\vec{b}_2 \times_b \vec{b}_3 = \vec{b}_1 = -\vec{a}_1 = -\vec{a}_2 \times_a \vec{a}_3 = -\vec{b}_2 \times_a \vec{b}_3$, and $\vec{b}_3 \times_b \vec{b}_1 = \vec{b}_2 = \vec{a}_2 = \vec{a}_3 \times_a \vec{a}_1 = -\vec{b}_3 \times_a \vec{b}_1$, and $\vec{b}_1 \times_b \vec{b}_2 = \vec{b}_3 = \vec{a}_3 = \vec{a}_1 \times_a \vec{a}_2 = -\vec{b}_1 \times_a \vec{b}_2$; And \times_a and \times_b are bilinear antisymmetric, hence (1.4).

Exercise 1.3 Let $(\cdot,\cdot)_a = ^{\text{noted}}$. •a. be the dot product associated to (\vec{a}_i) , i.e. defined by $(\vec{a}_i,\vec{a}_j)_a = \delta_{ij} = \vec{a}_i \bullet_a \vec{a}_j$ for all i,j. Check:

$$\vec{u} \times_a (\vec{v} \times_a \vec{w}) = (\vec{u} \cdot_a \vec{w})\vec{v} - (\vec{u} \cdot_a \vec{v})\vec{w}. \tag{1.5}$$

1.3 Determinant associated with a basis

Definition 1.4 The determinant associated with a basis (\vec{a}_i) is the tri-linear alternated form $\det_{\vec{a}}: V \times V \times V \to \mathbb{R}$ defined by

$$\det_{\vec{a}}(\vec{a}_1, \vec{a}_2, \vec{a}_3) = +1, \tag{1.6}$$

i.e. defined by, for all $\vec{u} = \sum_{i=1}^3 u_i \vec{a}_i$, $\vec{v} = \sum_{i=1}^3 v_i \vec{a}_i$ and $\vec{w} = \sum_{i=1}^3 w_i \vec{a}_i$ in V,

$$\det_{\vec{u}}(\vec{u}, \vec{v}, \vec{w}) = u_1(v_2w_3 - v_3w_2) + u_2(v_3w_1 - v_1w_3) + u_3(v_1w_2 - v_2w_1). \tag{1.7}$$

In other words, with $\det_{M}(A)$ the determinant of a 3 * 3 matrix A,

$$\det_{\vec{a}}(\vec{u}, \vec{v}, \vec{w}) := \det_{M}([\vec{u}]_{\vec{a}} \quad [\vec{v}]_{\vec{a}} \quad [\vec{w}]_{\vec{a}}), \tag{1.8}$$

where $([\vec{u}]_{\vec{a}} \quad [\vec{v}]_{\vec{a}} \quad [\vec{w}]_{\vec{a}})$ is the 3*3 matrix made of the columns $[\vec{u}]_{\vec{a}}, [\vec{v}]_{\vec{a}}, [\vec{w}]_{\vec{a}}$.

Remark: When (\vec{a}_i) is a Euclidean basis, $\det_{\vec{a}}(\vec{u}, \vec{v}, \vec{w})$ is the algebraic volume (or signed volume) of the parallelepiped limited by the three vectors $\vec{u}, \vec{v}, \vec{w}$ (in the chosen unit of measurement used to build the Euclidean basis). And $|\det_{\vec{a}}(\vec{u}, \vec{v}, \vec{w})|$ is the positive volume (or volume) of the parallelepiped.

Exercise 1.5 Let (\vec{b}_i) be defined by $\vec{b}_1 = -\vec{a}_1$, $\vec{b}_2 = \vec{a}_2$, $\vec{b}_3 = \vec{a}_3$ (change of orientation, drawing). Prove: $\det_{\vec{b}} = -\det_{\vec{a}}$ (the definition of a determinant is basis dependent).

 $\textbf{Answer}. \ \det_{\vec{a}} \text{ and } \det_{\vec{b}} \text{ being tri-linear alternated}, \det_{\vec{b}} (\vec{a}_1, \vec{a}_2, \vec{a}_3) = \det_{\vec{b}} (-\vec{b}_1, \vec{b}_2, \vec{b}_3) = -\det_{\vec{b}} (\vec{b}_1, \vec{b}_2, \vec{b}_3) \stackrel{(1.6)}{=} -1 \stackrel{(1.6)}{=} -1 \det_{\vec{a}} (\vec{a}_1, \vec{a}_2, \vec{a}_3), \text{ thus (tri-linearity) } \det_{\vec{b}} (\vec{u}, \vec{v}, \vec{w}) = -\det_{\vec{a}} (\vec{u}, \vec{v}, \vec{w}) \text{ for all } \vec{u}, \vec{v}, \vec{w}.$

1.4 Orientation of a basis

Two bases (\vec{a}_i) and (\vec{b}_i) have the same orientation iff $\det_{\vec{a}}(\vec{b}_1, \vec{b}_2, \vec{b}_3) > 0$ (i.e. iff $\det_{\vec{b}}(\vec{a}_1, \vec{a}_2, \vec{a}_3) > 0$). We then also say that the basis (\vec{b}_i) is positively oriented relatively to the basis (\vec{a}_i) .

(Euclidean setting: Right-handed bases are usually declared to be positively oriented.)

In other words, with $P = [P_{ij}]$ the transition matrix from (\vec{a}_i) to (\vec{b}_i) , i.e. with $[\vec{b}_j]_{\vec{e}} = \begin{pmatrix} P_{1j} \\ P_{2j} \\ P_{3j} \end{pmatrix}$ (the

j-th column of P) for all j: Two bases (\vec{a}_i) and (\vec{b}_i) have the same orientation iff $\det_M(P) > 0$.

Vector products and determinants

(1.3) and (1.7) immediately give: For all $\vec{u}, \vec{v}, \vec{w} \in V$,

$$\vec{u} \cdot_{a} (\vec{v} \times_{a} \vec{w}) = \det_{\vec{u}} (\vec{u}, \vec{v}, \vec{w}). \tag{1.9}$$

Proposition 1.6 Let (\vec{b}_i) be another $(\cdot,\cdot)_a$ -orthonormal basis (i.e. $\vec{b}_i \cdot \vec{b}_j = \delta_{ij}$ for all i,j,i.e. $(\cdot,\cdot)_b = (\cdot,\cdot)_b = (\cdot,\cdot)_a$ $(\cdot,\cdot)_a$). Then

$$\begin{cases}
\det_{\vec{b}} = \pm \det_{\vec{a}}, & i.e. \quad \det_{\vec{b}}(\vec{a}_1, \vec{a}_2, \vec{a}_3) = \pm 1, \\
\times_a = \pm \times_b, & i.e. \quad \vec{v} \times_b \vec{w} = \pm \vec{v} \times_a \vec{w}, \quad \forall \vec{v}, \vec{w} \in V,
\end{cases}$$
(1.10)

with + iff the bases have the same orientatio

Proof. Let $P := (\vec{b_1}|_{\vec{a}} \quad \vec{b_2}|_{\vec{a}} \quad \vec{b_3}|_{\vec{a}})$ (the transition matrix from $(\vec{a_i})$ to $(\vec{b_i})$). We get

$$\det_{\vec{a}}(\vec{b}_{1}, \vec{b}_{2}, \vec{b}_{3}) = \det_{M}([\vec{b}_{1}]_{\vec{a}}, [\vec{b}_{2}]_{\vec{a}}, [\vec{b}_{3}]_{\vec{a}}) = \det_{M}(P.[\vec{a}_{1}]_{\vec{a}}, P.[\vec{a}_{2}]_{\vec{a}}, P.[\vec{a}_{3}]_{\vec{a}})
= \det_{M}(P)\det_{M}([\vec{a}_{1}]_{\vec{a}}, [\vec{a}_{2}]_{\vec{a}}, [\vec{a}_{3}]_{\vec{a}}) = \det_{M}(P)\det_{M}(I) = \det_{M}(P)
= \det_{M}(P)\det_{\vec{b}}(\vec{b}_{1}, \vec{b}_{2}, \vec{b}_{3}).$$
(1.11)

And $det_M(P) = \pm 1$ with + iff the bases have the same orientation. Thus (1.10).

Thus $(\vec{v} \times_b \vec{w}) \cdot_b \vec{z} = \det_{\vec{k}}(\vec{v}, \vec{w}, \vec{z}) = \pm \det_{\vec{d}}(\vec{v}, \vec{w}, \vec{z}) = \pm (\vec{v} \times_a \vec{w}) \cdot_b \vec{z} = \pm (\vec{v} \times_a \vec{w}) \cdot_b \vec{z}$ for all \vec{z} (since $(\cdot,\cdot)_b=(\cdot,\cdot)_a$), thus $\vec{v}\times_b\vec{w}=\pm\vec{v}\times_a\vec{w}$, with + iff the bases have the same orientation. Thus (1.10).

Exercise 1.7 Let $(\vec{e_i})$ be a basis in V. Prove that $\vec{v} \times_e \vec{w}$ is a "contravariant vector", i.e. satisfies the change of basis formula $[\vec{v} \times_e \vec{w}]_{\text{new}} = P^{-1}.[\vec{v} \times_e \vec{w}]_{\text{old}}.$

Answer. First proof: By definition a vector in V is called a contravariant vector, and $\vec{v} \times_e \vec{w}$ is in V, thus $\vec{v} \times_e \vec{w}$ is contravariant.

Second proof (verification of the change of basis formla): Let (\vec{a}_i) be the old basis and (\vec{b}_i) be the new basis, and let $P = P_{ij}$ be the transition matrix from (\vec{a}_i) to (\vec{b}_i) , i.e. defined by $\vec{b}_j = \sum_i P_{ij} \vec{a}_i$ for all j. And let $g(\cdot, \cdot)$ be a scalar dot product (a symmetric definite positive bilinear form on V). The change of basis formulas give $[\vec{v}]_{\vec{b}} = P^{-1}.[\vec{v}]_{\vec{a}}$ for all $\vec{v} \in V$, and $[g]_{\vec{b}} = P^{T}.[g]_{\vec{a}}.P$. And, for all $\vec{u}, \vec{v}, \vec{w} \in V$, on the one hand $g(\vec{u}, \vec{v} \times_e \vec{w}) = [\vec{u}]_{\vec{a}}^T.[g]_{\vec{a}}.[\vec{v} \times_e \vec{w}]_{\vec{a}}$, and on the other hand

$$g(\vec{u}, \vec{v} \times_e \vec{w}) = [\vec{u}]_{\vec{b}}^T \cdot [g]_{\vec{b}} \cdot [\vec{v} \times_e \vec{w}]_{\vec{b}} = ([\vec{u}]_{\vec{a}}^T \cdot P^{-T}) \cdot (P^T \cdot [g]_{\vec{a}} \cdot P) \cdot [\vec{v} \times_e \vec{w}]_{\vec{b}} = [\vec{u}]_{\vec{a}}^T \cdot [g]_{\vec{a}} \cdot P \cdot [\vec{v} \times_e \vec{w}]_{\vec{b}}$$

hence $[\vec{v} \times_e \vec{w}]_{\vec{a}} = P.[\vec{v} \times_e \vec{w}]_{\vec{b}}$, i.e. $[\vec{v} \times_e \vec{w}]_{\vec{b}} = P^{-1}.[\vec{v} \times_e \vec{w}]_{\vec{a}}$: It is the change of basis formula for vectors. Third proof: $\vec{v} \times_e \vec{w}$ can also be defined with the Riesz representation theorem: The $(\cdot, \cdot)_e$ -Riesz representation vector of the linear form $\ell_{e\vec{v}\vec{w}}: \vec{z} \to \ell_{e\vec{v}\vec{w}}(\vec{z}) = \det_{\vec{e}}(\vec{v}, \vec{w}, \vec{z})$ is the vector $\vec{\ell}_{e\vec{v}\vec{w}}$ defined by $\ell_{e\vec{v}\vec{w}}.\vec{z} = (\vec{\ell}_{e\vec{v}\vec{w}}, \vec{z})_e$ for all $\vec{z} \in V$, and $\vec{\ell}_{e\vec{v}\vec{w}} = ^{\text{noted}} \vec{v} \times_e \vec{w}$ is contravariant since a Riesz-representation vector is.

Exercise 1.8 Recall: Two distinct Euclidean products $(\cdot, \cdot)_a$ and $(\cdot, \cdot)_b$ satisfy $(\cdot, \cdot)_a = \lambda^2(\cdot, \cdot)_b$ where λ is the ratio of the the unit of measures (e.g. if $(\cdot, \cdot)_a$ is built with a metre and $(\cdot, \cdot)_b$ is built with a foot then $\lambda = 0.3048$). Prove: If (\vec{a}_i) is a $(\cdot,\cdot)_a$ -orthonormal basis and (\vec{b}_i) is a $(\cdot,\cdot)_b$ -orthonormal basis, then $\det_{\vec{a}} = \pm \lambda^3 \det_{\vec{b}}$ and $\times_a = \pm \lambda \times_b$, with + iff the bases have the same orientation.

Answer. With the transition matrix P from (\vec{a}_i) to (\vec{b}_i) , i.e. $P = ([\vec{b}_1]_{\vec{a}} \quad [\vec{b}_2]_{\vec{a}} \quad [\vec{b}_3]_{\vec{a}})$, we get $\det_M(P) = (\vec{b}_1)_{\vec{a}} = (\vec{b}_2)_{\vec{a}} = (\vec{b}_3)_{\vec{a}}$ $\det_{\vec{u}}(\vec{b}_1,\vec{b}_2,\vec{b}_3) = \pm \lambda^3 \text{ (ratio of algebraic volumes)} = \pm \lambda^3 \det_{\vec{b}}(\vec{b}_1,\vec{b}_2,\vec{b}_3), \text{ thus } \det_{\vec{a}} = \pm \lambda^3 \det_{\vec{b}}, \text{ with } + \text{ iff the bases have the same orientation.} \quad \text{Thus } (\vec{v} \times_a \vec{w}, \vec{z})_a = \det_{\vec{u}}(\vec{v}, \vec{w}, \vec{z}) = \pm \lambda^3 \det_{\vec{b}}(\vec{v}, \vec{w}, \vec{z}) = \pm \lambda^3 (\vec{v} \times_b \vec{w}, \vec{z})_b = \pm \lambda^3 \frac{1}{\lambda^2} (\vec{v} \times_b \vec{w}, \vec{z})_b = \pm \lambda (\vec{v} \times_b \vec{w}, \vec{z})_b, \text{ for all } \vec{v}, \vec{w}, \vec{z} \in V, \text{ thus } \vec{v} \times_a \vec{w} = \pm \lambda \vec{v} \times_b \vec{w}, \text{ for all } \vec{v}, \vec{w} \in V.$

1.6 Basic properties

Proposition 1.9 Let (\vec{a}_i) be a basis in V and $\vec{v}, \vec{w} \in V$. Then:

- 1- If $\vec{v} \times_a \vec{z} = \vec{w} \times_a \vec{z}$ for all \vec{z} , then $\vec{v} = \vec{w}$.
- 2- With $(\cdot,\cdot)_a$ the associated dot product, $\vec{v} \times_a \vec{w}$ is $(\cdot,\cdot)_a$ -orthogonal to \vec{v} and to \vec{w} .
- 3- If \vec{v} is parallel to \vec{w} then $\vec{v} \times_a \vec{w} = 0$. 3'- If $\vec{v} \times_a \vec{w} \neq 0$ then \vec{v} is not parallel to \vec{w} .
- 4- If \vec{v} is not parallel to \vec{w} then $\vec{v} \times_a \vec{w} \neq 0$. 4'- If $\vec{v} \times_a \vec{w} = 0$ then \vec{v} is parallel to \vec{w} .
- 5- If \vec{v} is not parallel to \vec{w} then $(\vec{v}, \vec{w}, \vec{v} \times_a \vec{w})$ has the same orientation than (\vec{a}_i) .
- 6- Euclidean case: $||\vec{v} \times_a \vec{w}||_a$ is the area or the parallelogram (\vec{v}, \vec{w}) (in the unit chosen for (\vec{a}_i)).

Proof. 1-
$$\vec{v} = \sum_i v_i \vec{a}_i$$
 and (1.3) give $[\vec{v} \times_a \vec{a}_1]_{\vec{a}} = \begin{pmatrix} 0 \\ v_3 \\ -v_2 \end{pmatrix}$, similarly $[\vec{w} \times_a \vec{a}_1]_{\vec{a}} = \begin{pmatrix} 0 \\ w_3 \\ -w_2 \end{pmatrix}$, thus $v_3 = w_3$

and $v_2 = w_2$. Similarly with \vec{a}_2 wich gives $v_1 = w_1$.

- 2- With $\det_{\vec{a}}$ the associated determinant, $(\vec{v} \times_a \vec{w}) \cdot_a \vec{v} = \det_{\vec{a}}(\vec{v}, \vec{w}, \vec{v}) = 0$ since $\det_{\vec{a}}$ is alternated, similarly $(\vec{v} \times_a \vec{w}) \cdot_a \vec{w} = 0$.
 - 3- Trivial with (1.3). 3'- Contraposition.
- 4- If \vec{v} is not parallel to \vec{w} then let $\vec{z} \in V$ s.t. $(\vec{v}, \vec{w}, \vec{z})$ is a basis; Hence, $\det_{\vec{u}}(\vec{v}, \vec{w}, \vec{z}) \neq 0$, thus $(\vec{v} \times_a \vec{w}) \cdot_a \vec{z} \neq 0$, thus $\vec{v} \times_a \vec{w} \neq \vec{0}$. 4'- Contraposition.
- 5- $\det_{\vec{a}}(\vec{v}, \vec{w}, \vec{v} \times_a \vec{w}) = \stackrel{(1.9)}{(\vec{v} \times_a \vec{w})} \cdot (\vec{v} \times_a \vec{w}) = ||\vec{v} \times_a \vec{w}||^2 > 0 \text{ since } \vec{v} \not\parallel \vec{w}.$ 6- If \vec{v} is parallel to \vec{w} then it is trivial (zero area). Otherwise $\vec{v} \times_a \vec{w} \neq \vec{0}$ thus $0 \neq \det_{\vec{a}}(\vec{v}, \vec{w}, \frac{\vec{v} \times_a \vec{w}}{||\vec{v} \times_a \vec{w}||_a}) =$ $(\vec{v} \times_a \vec{w}) \cdot_a \frac{\vec{v} \times_a \vec{w}}{||\vec{v} \times_a \vec{w}||_a} = ||\vec{v} \times_a \vec{w}||_a = \text{volume of the parallelepiped } (\vec{v}, \vec{w}, \frac{\vec{v} \times_a \vec{w}}{||\vec{v} \times_a \vec{w}||_a}) \text{ (height 1)}.$

$\mathbf{2}$ Antisymmetric endomorphism and the representation vectors

Dimension issue and Euclidean setting

Let $\mathcal{L}(V_1, V_2)$ be the space of linear maps from a vector space V_1 to a vector space V_2 .

Continuing § 1.1. We will have to deal with linear maps $L \in \mathcal{L}(\overline{\mathbb{R}^3}, V)$ where $\overline{\mathbb{R}^3}$ is the space of bi-point vectors (dimension [length]), and V is the space of velocities (dimension [length]/[time]) or the space of moments (dimension [force] \times [length] = [masse] \times [length]²/[time]²). Hence the linear map L is not an endomorphism (although $\dim(V) = 3$).

However, for quantification, we will use a (Euclidean) basis $(\vec{a}_i) \in \mathbb{R}^3$ and a basis $(\vec{b}_i) \in V$ which use the same unit of length (thus $L.\vec{u}$ will give meaningful results); And we will abusively write $L \in \mathcal{L}(\overline{\mathbb{R}^3}; \overline{\mathbb{R}^3})$, instead of $L \in \mathcal{L}(\overline{\mathbb{R}^3}; V)$, and we will abusively say that L is an endomorphism.

Transpose of an endomorphism

Let V be a real vector space and $\mathcal{L}(V;V)$ be the set of endomorphisms $V \to V$ (it is a real vector space with the usual internal addition and external multiplication). Usual notation for a linear map: $L(\vec{v}) = ^{\text{noted}} L.\vec{v}$, hence $L.(\vec{v} + \lambda \vec{w}) = L.\vec{v} + \lambda L.\vec{w}$ (distributivity notation = linearity).

Definition 2.1 Let $L \in \mathcal{L}(V; V)$ and let $(\cdot, \cdot)_g = \cdot \bullet_g$. be a scalar dot product in V. The transposed of L relative to $(\cdot, \cdot)_g$ is the linear map $L_g^T \in \mathcal{L}(V; V)$ defined by, for all $\vec{v}, \vec{w} \in V$,

$$(L_a^T \cdot \vec{w}, \vec{v})_a = (\vec{w}, L \cdot \vec{v})_a \quad (= (L \cdot \vec{v}, \vec{w})_a),$$
 (2.1)

i.e. $(L_q^T \cdot \vec{w}) \bullet_q \vec{v} = \vec{w} \bullet_q (L \cdot \vec{v}) (= (L \cdot \vec{v}) \bullet_q \vec{w})$.

Matrix representation: Let (\vec{a}_i) be a basis in V. Let $[L]_{\vec{a}} = [L_{ij}]$ be the matrix of L relative to (\vec{a}_i) , and let $[L_q^T]_{\vec{a}} = [(L_g^T)_{ij}] = \text{the matrix of } L_g^T \text{ relative to } (\vec{a}_i), \text{ i.e., for all } j,$

$$L.\vec{a}_j = \sum_{i=1}^3 L_{ij}\vec{a}_i$$
 and $L_g^T.\vec{a}_j = \sum_i (L_g^T)_{ij}\vec{a}_i$. (2.2)

Let $[g]_{\vec{a}}$ be the matrix of $(\cdot, \cdot)_g$ relative to (\vec{a}_i) , i.e. $[g]_{\vec{a}} = [(\vec{a}_i, \vec{a}_j)_g]$. (2.1) gives $[\vec{v}]_{\vec{a}}^T \cdot [g]_{\vec{a}} \cdot [\vec{w}]_{\vec{b}} = [\vec{w}]_{\vec{a}} \cdot [\vec{w}]_{\vec{b}}$ $[\vec{v}]_{\vec{a}}^T.[L]_{\vec{a}}^T.[g]_{\vec{a}}.[\vec{w}]_{\vec{a}} \text{ for all } \vec{v},\vec{w}, \text{ thus } [g]_{\vec{a}}.[L_q^T]_{\vec{a}} = [L]_{\vec{a}}^T.[g]_{\vec{a}}, \text{ i.e. }$

$$[L_a^T]_{\vec{a}} = [g]_{\vec{a}}^{-1} \cdot [L]_{\vec{a}}^T \cdot [g]_{\vec{a}}. \tag{2.3}$$

In particular, if (\vec{a}_i) is a $(\cdot, \cdot)_q$ orthonormal basis, then $[g]_{\vec{a}} = I$, thus $[L_q^T]_{\vec{a}} = [L]_{\vec{a}}^T$.

Euclidean setting: Useful result: If $(\cdot,\cdot)_a$ and $(\cdot,\cdot)_b$ are two Euclidean dot products (e.g. $(\cdot,\cdot)_a$ built with a metre and $(\cdot, \cdot)_b$ with a foot) then

$$L_a^T = L_b^T \stackrel{\text{noted}}{=} L^T$$
 (Euclidean setting), (2.4)

Indeed, $\exists \lambda > 0$ s.t. $(\cdot, \cdot)_a = \lambda^2(\cdot, \cdot)_b$, thus $(L_a^T.\vec{w}, \vec{v})_a = (\vec{w}, L.\vec{v})_a = \lambda^2(\vec{w}, L.\vec{v})_b = \lambda^2(L_b^T.\vec{w}, \vec{v})_b = (L_b^T.\vec{w}, \vec{v})_a$ for all $\vec{v}, \vec{w} \in \mathbb{R}^3$. So the transposed of an endomorphism in \mathbb{R}^3 Euclidean doesn't depend on the unit of measurement (metre, foot,...) used to build a Euclidean basis.

Matrix representation: With $(\vec{e_i})$ is a $(\cdot, \cdot)_e$ -Euclidean basis in $V = \overrightarrow{\mathbb{R}^3}$ (so $[e]_{\vec{e}} = I$):

$$[L^T]_{\vec{e}} = [L]_{\vec{e}}^T, \text{ i.e. } (L^T)_{ij} = L_{ji} \ \forall i, j.$$
 (2.5)

Exercise 2.2 Check: The transposed map $\frac{T}{g}: L \in \mathcal{L}(V; V) \to \frac{T}{g}(L) := L_g^T \in \mathcal{L}(V; V)$ is linear.

$$\begin{array}{l} \textbf{Answer}. \quad ((L+\lambda M)_g^T.\vec{w},\vec{v})_g = (\vec{w},(L+\lambda M).\vec{v})_g = (\vec{w},L.\vec{v})_g + \lambda (\vec{w},M.\vec{v})_g = (L_g^T.\vec{w},\vec{v})_g + \lambda (M_g^T.\vec{w},\vec{v})_g = ((L_g^T+\lambda M_g^T).\vec{w},\vec{v})_g, \text{ for all } \vec{v},\vec{w} \in V \text{ and } \lambda \in \mathbb{R}, \text{ gives } (L+\lambda M)_g^T = L_g^T + \lambda M_g^T. \end{array}$$

2.3 Symmetric and antisymmetric endomorphisms

Definition 2.3 Let $L \in \mathcal{L}(V; V)$ and let $(\cdot, \cdot)_q$ be a scalar dot product in V.

•
$$L$$
 is $(\cdot, \cdot)_g$ -symmetric iff $L_g^T = L$, i.e. $(L.\vec{w}, \vec{v})_g = (\vec{w}, L.\vec{v})_g$, $\forall \vec{v}, \vec{w}$,
• L is $(\cdot, \cdot)_g$ -antisymmetric iff $L_g^T = -L$, i.e. $(L.\vec{w}, \vec{v})_g = -(\vec{w}, L.\vec{v})_g$, $\forall \vec{v}, \vec{w}$. (2.6)

Proposition 2.4 The space of $(\cdot, \cdot)_g$ -symmetric endomorphisms is a vector space. The space of $(\cdot, \cdot)_g$ -antisymmetric endomorphisms is a vector space.

Proof. $(L+\lambda M)_g^T=L_g^T+\lambda M_g^T=(\pm L)+\lambda(\pm M)=\pm(L+\lambda M)$ with + iff L and M are $(\cdot,\cdot)_g$ -symmetric and - iff L and M are antisymmetric. Thus, vector sub-spaces of $\mathcal{L}(V;V)$.

Euclidean setting: $(\cdot, \cdot)_g$ is a Euclidean dot product; With (2.4),

•
$$L$$
 is Euclidean-symmetric iff $L^T = L$,
• L is Euclidean-antisymmetric iff $L^T = -L$. (2.7)

Hence if (\vec{e}_i) is any euclidean basis (so $[g]_{\vec{e}} = \lambda^2 I$), (2.3) gives

•
$$L$$
 is Euclidean-symmetric iff $[L^T]_{\vec{e}} = [L]_{\vec{e}}$,
• L is Euclidean-antisymmetric iff $[L^T]_{\vec{e}} = -[L]_{\vec{e}}$. (2.8)

2.4 Antisymmetric endomorphism and the representation vectors

Let $L \in \mathcal{L}(\overrightarrow{\mathbb{R}^3}; \overrightarrow{\mathbb{R}^3})$. Let $(\vec{e_i})$ be a Euclidean basis and $(\cdot, \cdot)_e$ be the associated Euclidean dot product. Suppose L is $(\cdot, \cdot)_e$ -antisymmetric: $(2.6)_2$ gives $(L.\vec{e_i}, \vec{e_i})_e = 0$, thus $L_{ii} = 0$ for all i, thus $L.\vec{e_1} = c\vec{e_2} - b\vec{e_3}$, $L.\vec{e_2} = -c\vec{e_1} + a\vec{e_3}$ and $L.\vec{e_3} = b\vec{e_1} - a\vec{e_2}$ for some $a, b, c \in \mathbb{R}$. And the vector $\vec{\omega}_e := a\vec{e_1} + b\vec{e_2} + c\vec{e_3} \in \overrightarrow{\mathbb{R}^3}$ immediately satisfies

$$L.\vec{v} = \vec{\omega}_e \times_e \vec{v}. \tag{2.9}$$

I.e.

$$[L]_{\vec{e}} = \begin{pmatrix} 0 & -c & b \\ c & 0 & -a \\ -b & a & 0 \end{pmatrix} \quad \text{and} \quad [\vec{\omega}_e]_{\vec{e}} := \begin{pmatrix} a \\ b \\ c \end{pmatrix} \quad \text{give} \quad L.\vec{v} = \vec{\omega}_e \times_e \vec{v}, \ \forall \vec{v} \in \overrightarrow{\mathbb{R}^3}. \tag{2.10}$$

NB: The representation vector $\vec{\omega}_e$ (of L) is **not** intrinsic to L, because it depends on the choice of a basis by an observer. See next exercise 2.6.

Definition 2.5 $\vec{\omega}_e = a\vec{e}_1 + b\vec{e}_2 + c\vec{e}_3$ is called the representation vector of the antisymmetric endomorphism L relative to the Euclidean basis (\vec{e}_i) .

Exercise 2.6 Let $(\vec{z_i})$ be another $(\cdot, \cdot)_e$ -orthonormal basis; Prove: $\vec{\omega}_z = \pm \vec{\omega}_e$ with + iff the bases have the same orientation. Let $(\vec{b_i})$ be a basis s.t. $(\vec{e_i}, \vec{e_j})_e = \lambda^2(\vec{b_i}, \vec{b_j})_e$ for some $\lambda > 0$ (e.g. $(\vec{e_i})$ is a Euclidean basis made with the metre and $(\vec{b_i})$ is a Euclidean basis made with the foot); Prove: $\vec{\omega}_b = \pm \lambda \vec{\omega}_e$ with + iff the bases have the same orientation.

Answer. (1.10) gives $\times_z = \pm \times_e$, thus $\vec{\omega}_e \times_e \vec{v} = L.\vec{v} = \vec{\omega}_z \times_z \vec{v} = \pm \vec{\omega}_z \times_e \vec{v}$, for all \vec{v} , thus $\vec{\omega}_z = \pm \vec{\omega}_e$, with + iff the bases have the same orientation. For (\vec{b}_i) , apply exercise 1.8.

2.5 Interpretation ($\pi/2$ rotation and dilation)

Consider (2.9) (or (2.10)), and let $\omega_e = ||\vec{\omega}_e||_e = \sqrt{a^2 + b^2 + c^2}$. Then define the positively oriented Euclidean basis (\vec{b}_i) s.t. $\vec{b}_3 := \frac{\vec{\omega}_e}{\omega_e}$. We get (direct calculation see exercise 2.7)

$$[L]_{\vec{b}} = \omega_e \begin{pmatrix} 0 & -1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} = \omega_e \begin{pmatrix} 0 & -\sin(\frac{\pi}{2}) & 0 \\ \sin(\frac{\pi}{2}) & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}, \quad [\vec{\omega}_e]_{\vec{b}} = \omega_e \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}. \tag{2.11}$$

So $L.\vec{v}$ rotates a vector $\vec{v} = v_1\vec{b}_1 + v_2\vec{b}_2 \in \text{Vect}\{\vec{b}_1, \vec{b}_2\}$ through an angle $\frac{\pi}{2}$ radians in the plane $\text{Vect}\{\vec{b}_1, \vec{b}_2\}$ and dilates by a factor ω_e (in particular $L.\vec{b}_1 = \omega_e\vec{b}_2$ and $L.\vec{b}_2 = -\omega_e\vec{b}_1$). And $L.\vec{b}_3 = \vec{0}$.

Exercise 2.7 Give a Euclidean basis $(\vec{b_i})$ s.t. $[L]_{\vec{e}}$ is given by (2.11).

$$\begin{aligned} \mathbf{Answer}. & \ [\vec{b}_3]_{\vec{e}} = \frac{1}{\omega_e} \begin{pmatrix} a \\ b \\ c \end{pmatrix}; \ \mathrm{Let} \ [\vec{b}_1]_{|\vec{e}} = \frac{1}{\sqrt{a^2 + b^2}} \begin{pmatrix} -b \\ a \\ 0 \end{pmatrix}, \ \mathrm{so} \ \vec{b}_1 \ \mathrm{is \ a \ unit \ vector} \perp \vec{b}_3. \ \mathrm{Then \ choose} \ \vec{b}_2 = \vec{b}_3 \times_e \vec{b}_1, \\ \mathrm{i.e.} & \ [\vec{b}_2]_{|\vec{e}} = \frac{1}{\sqrt{a^2 + b^2}} \frac{1}{\omega_e} \begin{pmatrix} -ac \\ -bc \\ a^2 + b^2 \end{pmatrix}. \ \mathrm{Thus} \ (\vec{b}_i) \ \mathrm{is \ a \ direct \ orthonormal \ basis.} \ \mathrm{With} \ P = \left(\ [\vec{b}_1]_{|\vec{e}} \quad [\vec{b}_2]_{|\vec{e}} \quad [\vec{b}_3]_{|\vec{e}} \right) \ \mathrm{the} \\ \mathrm{transition \ matrix \ from} \ (\vec{e}_i) \ \mathrm{to} \ (\vec{b}_i) \ \mathrm{we \ have} \ [L]_{|\vec{b}} = P^{-1}.[L]_{|\vec{e}}.P \ (\mathrm{change \ of \ basis \ formula \ for \ endomorphisms}), \ \mathrm{with} \\ P^{-1} = P^T \ (\mathrm{change \ of \ orthonormal \ basis}) \colon \mathrm{We \ get} \ (2.11). \end{aligned}$$

3 Antisymmetric matrix and the pseudo-vector representation

3.1 The pseudo-vector product

Let
$$\mathcal{M}_{31} = \left\{ \begin{pmatrix} v_1 \\ v_2 \\ v_3 \end{pmatrix} : v_1, v_2, v_3 \in \mathbb{R} \right\}$$
 be the set of real $3*1$ column matrices. Let $\begin{pmatrix} v_1 \\ v_2 \\ v_3 \end{pmatrix} =^{\text{noted}} [\vec{v}]$.

Definition 3.1 A column matrix $[\vec{v}] \in \mathcal{M}_{31}$ is also called a pseudo-vector.

Definition 3.2 The pseudo-vector product is the function $\overset{\circ}{\times}: \mathcal{M}_{31} \times \mathcal{M}_{31} \to \mathcal{M}_{31}$ defined by

$$\overset{\circ}{\times} ([\vec{v}], [\vec{w}]) = \begin{pmatrix} v_2 w_3 - v_3 w_2 \\ v_3 w_1 - v_1 w_3 \\ v_1 w_2 - v_2 w_1 \end{pmatrix} \xrightarrow{\text{noted}} [\vec{v}] \overset{\circ}{\times} [\vec{w}, \text{ when } [\vec{v}] = \begin{pmatrix} v_1 \\ v_2 \\ v_3 \end{pmatrix} \text{ and } [\vec{w}] = \begin{pmatrix} w_1 \\ w_2 \\ w_3 \end{pmatrix}, \quad (3.1)$$

and the column matrix $[\vec{v}] \stackrel{\circ}{\times} [\vec{w}]$ is called the pseudo-vector product of $[\vec{v}]$ and $[\vec{w}]$.

Remark 3.3 \mathcal{M}_{31} being a vector space, the pseudo-vector product $\overset{\circlearrowleft}{\times}$ can also be defined to be the vector product $\overset{\circlearrowleft}{\times} := \times_E$ in \mathcal{M}_{31} , where $([\vec{E}_i])$ is the canonical basis in \mathcal{M}_{31} , i.e. $[\vec{E}_1] := \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$, $[\vec{E}_2] := \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}$

and $[\vec{E}_3] := \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$ (three column matrices), the unit 1 being the neutral element of the multiplication in \mathbb{R} . This unit 1 is not linked to any "unit of measurement": It is theoretical. And a "Euclidean basis" is meaningless in \mathcal{M}_{31} .

3.2 Antisymmetric matrix and the pseudo-vector representation

Let $M \in \mathcal{M}_{33}$ be an antisymmetric matrix, so there exists $a, b, c \in \mathbb{R}$ s.t.

$$M = \begin{pmatrix} 0 & -c & b \\ c & 0 & -a \\ -b & a & 0 \end{pmatrix}, \text{ and let } \overset{\circlearrowleft}{\omega} = \begin{pmatrix} a \\ b \\ c \end{pmatrix}, \tag{3.2}$$

We immediately get, for all $[\vec{v}] \in \mathcal{M}_{31}$,

$$M.[\vec{v}] = \overset{\circlearrowleft}{\omega} \overset{\circlearrowleft}{\times} [\vec{v}]. \tag{3.3}$$

The column matrix (the pseudo-vector) $\overset{\bigcirc}{\omega} \in \mathcal{M}_{31}$ is called the pseudo-vector representation (column matrix representation) of the matrix M.

4. Screw (torsor)

3.3 Pseudo-representation vectors of an antisymmetric endomorphism

Let $(\vec{e_i})$ be a Euclidean basis and $(\cdot, \cdot)_e$ its associated Euclidean dot product. Let $L \in \mathcal{L}(\overrightarrow{\mathbb{R}^3}; \overrightarrow{\mathbb{R}^3})$ be $(\cdot, \cdot)_e$ -antisymmetric. Then (2.9) immediately gives, for all $[\vec{v}] \in \mathcal{M}_{31}$,

$$[L]_{\vec{e}} \cdot [\vec{v}] = \overset{\circlearrowleft}{\omega} \overset{\circlearrowleft}{\times} [\vec{v}] \quad \text{where} \quad \overset{\circlearrowleft}{\omega} := [\vec{\omega}_e]_{\vec{e}}, \tag{3.4}$$

and where $\overset{\circlearrowleft}{\omega}$ should be written $\overset{\circlearrowleft}{\omega_e}$ since it depends on the basis $(\vec{e_i})$ used to define $[L]_{\vec{e}}$ (depends on the chosen unit of measurement used to build the Euclidean basis $(\vec{e_i})$). The matrix $\overset{\circlearrowleft}{\omega}$ is called the pseudo-representation vector of L relative to $(\vec{e_i})$.

4 Screw (torsor)

4.0 Reminder

- Let Dom be an open set in \mathbb{R}^3 and let $\vec{u}: \left\{ \begin{matrix} Dom \to \overrightarrow{\mathbb{R}^3} \\ A \to \vec{u}(A) \end{matrix} \right\}$ (so Dom is the domain of definition of \vec{u} e.g. the position in space of some material at some time t). The function \vec{u} is differentiable at $A \in Dom$ iff there exists $L_{\vec{u}}(A) \in \mathcal{L}(\overrightarrow{\mathbb{R}^3}; \overrightarrow{\mathbb{R}^3})$ (linear) s.t. $\vec{u}(B) = \vec{u}(A) + L_{\vec{u}}(A).\overrightarrow{AB} + o(||\overrightarrow{AB}||)$ near A (first order Taylor expansion). In which case $L_{\vec{u}}(A) = {}^{\text{noted}} d\vec{u}(A)$, called the differential of \vec{u} at A.
- $\vec{u}: Dom \to \overrightarrow{\mathbb{R}^3}$ is affine iff there exists $L_{\vec{u}} \in \mathcal{L}(\overrightarrow{\mathbb{R}^3}; \overrightarrow{\mathbb{R}^3})$ s.t., for all $A \in Dom$ and B near A,

$$\vec{u}(B) = \vec{u}(A) + L_{\vec{u}}.\overrightarrow{AB}. \tag{4.1}$$

 $L_{\vec{u}}$ is called "the associated linear map" with \vec{u} . Thus \vec{u} is differentiable in Dom, and, at any A, its differential $L_{\vec{u}}(A) = d\vec{u}(A) = \stackrel{\text{noted}}{d\vec{u}} = \stackrel{\text{noted}}{d\vec{u}} = \stackrel{\text{noted}}{L_{\vec{u}}} L_{\vec{u}}$ is independent of A. (Here the first order Taylor expansion reads $\vec{u}(B) = \vec{u}(A) + d\vec{u}.\overrightarrow{AB} + o(||\overrightarrow{AB}||)$ with $o(||\overrightarrow{AB}||) = 0$.)

• A vector field in \mathbb{R}^3 is a function $\widetilde{\vec{u}}: \left\{ \begin{array}{l} Dom \to Dom \times \overline{\mathbb{R}^3} \\ A \to \widetilde{\vec{u}}(A) := (A, \vec{u}(A)) \end{array} \right\}$, the couple $\widetilde{\vec{u}}(A) := (A, \vec{u}(A))$

being a "pointed vector at A", or "a vector at A". Drawing: $\vec{u}(A)$ has to be drawn at A, nowhere else. To compare with a vector $\vec{v} \in \mathbb{R}^3$ which can be drawn anywhere (also called a free vector).

The sum of two vector fields $\widetilde{u}, \widetilde{w}: Dom \to \overline{\mathbb{R}^3}$ and the multiplication by a scalar λ are defined by, at any $A \in Dom$,

$$\widetilde{\vec{u}}(A) + \widetilde{\vec{w}}(A) = (A, \vec{u}(A) + \vec{w}(A)), \text{ and } \lambda \widetilde{\vec{u}}(A) = (A, \lambda \vec{u}(A))$$
 (4.2)

(usual rules for "vectors at A").

If there is no ambiguity then, to lighten the notations, $\widetilde{\vec{u}}(A) = {}^{\text{noted}} \vec{u}(A)$ (pointed vector).

The differential of a vector field $\widetilde{\vec{u}}: Dom \to Dom \times \mathbb{R}^3$ at a point A is the "field of endomorphisms" $d\widetilde{\vec{u}}: Dom \to Dom \times \mathcal{L}(\mathbb{R}^3; \mathbb{R}^3)$ defined by $d\widetilde{\vec{u}}(A) = (A, d\vec{u}(A))$ (an endomorphism at A).

• An affine vector field $\widetilde{\vec{u}}$: $\left\{ \begin{array}{c} Dom \to Dom \times \overrightarrow{\mathbb{R}^3} \\ A \to \widetilde{\vec{u}}(A) := (A, \vec{u}(A)) \end{array} \right\}$ is a vector field s.t. $\vec{u} : Dom \to \overrightarrow{\mathbb{R}^3}$ is affine.

4.1 Definition

Definition 4.1 A screw (a torsor) is a Euclidean antisymmetric affine vector field, i.e. a function

8

$$\widetilde{\vec{u}}: \left\{ \begin{array}{c} Dom \to Dom \times \overrightarrow{\mathbb{R}^3} \\ A \to \widetilde{\vec{u}}(A) := (A, \vec{u}(A)) \end{array} \right\} \quad s.t. \quad \vec{u}: Dom \times \overrightarrow{\mathbb{R}^3} \text{ is affine antisymmetric.}$$
 (4.3)

To lighten the notations $\widetilde{\vec{u}}(A) = {}^{noted} \vec{u}(A)$ (pointed vector at A). So, for all $A, B \in Dom$:

$$\boxed{\vec{u}(B) = \vec{u}(A) + L_{\vec{u}}.\overrightarrow{AB} \quad where \quad L_{\vec{u}}^T = -L_{\vec{u}}}.$$
(4.4)

 $\vec{u}(A)$ is called the moment of the screw \vec{u} at A (or moment of the torsor \vec{u} at A).

If $\vec{u} = \vec{0}$ then $\tilde{\vec{u}}$ is a degenerate screw (a degenerate torsor).

g4. Screw (torsor)

Exercise 4.2 Let \mathcal{S} be the set of the screws $\vec{u}: Dom \to \overline{\mathbb{R}^3}$. Prove: \mathcal{S} is a vector space, and the map $\ell: \left\{ \begin{matrix} \mathcal{S} & \to \mathcal{L}(\overline{\mathbb{R}^3}; \overline{\mathbb{R}^3}) \\ \vec{u} & \to \ell(\vec{u}) = L_{\vec{u}} \end{matrix} \right\}$ is linear.

Answer. If $\vec{u}_1, \vec{u}_2 \in \mathcal{S}$ and $\lambda \in \mathbb{R}$ then $\vec{u}_1 + \lambda \vec{u}_2$ is affine antisymmetric: Indeed, at B, $(\vec{u}_1 + \lambda \vec{u}_2)(B) = \vec{u}_1(B) + \lambda \vec{u}_2(B) = (\vec{u}_1(A) + L_{\vec{u}_1} \cdot \overrightarrow{AB}) + \lambda (\vec{u}_2(A) + L_{\vec{u}_2} \cdot \overrightarrow{AB}) = (\vec{u}_1 + \lambda \vec{u}_2)(A) + (L_{\vec{u}_1} + \lambda L_{\vec{u}_2}) \cdot \overrightarrow{AB}$ with $L_{\vec{u}_1} + \lambda L_{\vec{u}_2}$ antisymmetric since $L_{\vec{u}_1}$ and $L_{\vec{u}_2}$ are; Thus $\vec{u}_1 + \lambda \vec{u}_2$ is affine and $L_{\vec{u}_1 + \lambda \vec{u}_2} = L_{\vec{u}_1} + \lambda L_{\vec{u}_2}$ is the associated linear function. Thus $\ell(\vec{u}_1 + \lambda \vec{u}_2) = L_{\vec{u}_1 + \lambda \vec{u}_2} = L_{\vec{u}_1} + \lambda L_{\vec{u}_2} = \ell(\vec{u}_1) + \lambda \ell(\vec{u}_2)$ (linearity).

Constant screw 4.2

Definition 4.3 A constant screw \vec{u} is a non degenerate screw $(\vec{u} \neq \vec{0})$ s.t.

$$\forall A, B \in Dom, \quad \vec{u}(A) = \vec{u}(B). \tag{4.5}$$

4.3Euclidean setting: Resultant vector and resultant (pseudo-vector)

Euclidean setting: Euclidean basis $(\vec{e_i})$ in $\overrightarrow{\mathbb{R}^3}$, associated Euclidean dot product $(\cdot,\cdot)_e$ (needed to define the transposed of a linear map), associated vector product \times_e (needed to represent an antisymmetric endomorphism with a vector).

Consider a screw
$$\vec{u}: Dom \to \mathbb{R}^3$$
, given as in (4.4). With $[L_{\vec{u}}]_{\vec{e}} = \begin{pmatrix} 0 & -c & b \\ c & 0 & -a \\ -b & a & 0 \end{pmatrix}$ and $[\vec{\omega}_e]_{\vec{e}} :=$

$$\begin{pmatrix} a \\ b \\ c \end{pmatrix} = \overset{\circlearrowleft}{\omega}$$
, cf. (2.10), we get, for all $A, B \in Dom$,

$$\vec{u}(B) = \vec{u}(A) + \vec{\omega}_e \times_e \overrightarrow{AB}, \quad \text{i.e.} \quad [\vec{u}(B)]_{\vec{e}} = [\vec{u}(A)]_{\vec{e}} + \overset{\circlearrowleft}{\omega} \times [\overrightarrow{AB}]_{\vec{e}}. \tag{4.6}$$

Definition 4.4 The vector $\vec{\omega}_e \in \overline{\mathbb{R}^3}$ is the resultant vector of the screw \vec{u} relative to (\vec{e}_i) . The vector reduction elements at $A \in Dom$ are the vectors $\vec{\omega}_e \in \overline{\mathbb{R}^3}$ and $\vec{u}(A) \in \overline{\mathbb{R}^3}$, often written as the couple of vectors $(\vec{\omega}_e, \vec{u}(A)) = {\text{noted} \choose \vec{u}(A)}$ (relative to (\vec{e}_i)).

Definition 4.5 The pseudo-vector (the matrix) $\overset{\circ}{\omega} := [\vec{\omega}_e]_{\vec{e}}$ is the resultant of the screw \vec{u} relative to $(\vec{e_i})$. The reduction elements at $A \in Dom$ are the pseudo-vectors $\overset{\circlearrowleft}{\omega} := [\vec{\omega}_e]_{\vec{e}} \in \mathcal{M}_{31}$ and $[\vec{u}(A)]_{\vec{e}} \in \mathcal{M}_{31}$, often written as the couple of matrices $(\overset{\circlearrowleft}{\omega}, [\vec{u}(A)]_{\vec{e}}) =^{\text{noted}} \begin{pmatrix} \overset{\circlearrowleft}{\omega} \\ [\vec{u}(A)]_{\vec{e}} \end{pmatrix}$ (relative to (\vec{e}_i)).

NB: Recall: The representation vector $\vec{\omega}_e$ (of $L_{\vec{u}}$) is **not** intrinsic to $L_{\vec{u}}$, because it depends on the choice of a basis by an observer, cf. exercise 2.6. Thus the pseudo-vector $\overset{\circ}{\omega}$ is **not** intrinsic to $L_{\vec{u}}$ either.

Remark 4.6 (4.6) is sometimes abusively written $\vec{u}(B) = \vec{u}(A) + \vec{\omega} \times \overrightarrow{AB}$ (no reference to any basis) which causes misunderstandings and confusions between vectors and pseudo-vectors (matrices).

Exercise 4.7 Let \vec{u} be a screw. For all $\lambda \in \mathbb{R}$ and $A, B \in \mathbb{R}^3$, prove:

$$\vec{u}(A + \lambda \vec{\omega}_e) = \vec{u}(A), \tag{4.7}$$

then

$$\vec{u}(B) \cdot_e \vec{\omega}_e = \vec{u}(A) \cdot_e \vec{\omega}_e$$
, thus = constant, called the screw invariant, (4.8)

and $(\vec{u}(B) \bullet_e \frac{\vec{\omega}_e}{||\vec{\omega}_e||_e}) \frac{\vec{\omega}_e}{||\vec{\omega}_e||_e}$ is the vector invariant, and

$$\vec{u}(B) \cdot \vec{AB} = \vec{u}(A) \cdot \vec{AB}$$
, called the equi-projectivity property. (4.9)

Answer.
$$Z = A + \lambda \vec{\omega}_e$$
 gives $\overrightarrow{AZ} = \lambda \vec{\omega}_e$, thus $\vec{u}(Z) = (4.6) \vec{u}(A) + \vec{\omega}_e \times_e (\lambda \vec{\omega}_e) = \vec{u}(A) + \vec{0}$, i.e. (4.7). Then $\vec{u}(B) = (4.6) \vec{u}(A) + \vec{\omega}_e \times_e (AB) \vec{u}(A) + \vec{\omega}_e \times_e (AB) \vec{u}(A) + \vec{u}(A) \vec{u}(A) + \vec{u}(A) \vec{u}(A) \vec{u}(A) + \vec{u}(A) \vec$

9

July 14, 2023

10 4. Screw (torsor)

Exercise 4.8 Choose a basis $(\vec{e_i})$ (and S is the set of screws). Let A be fixed and define the function f_A : $(\vec{z}, \vec{w}) \in \overrightarrow{\mathbb{R}^3} \times_e \overrightarrow{\mathbb{R}^3} \to \vec{u} = f_A(\vec{z}, \vec{w}) \in \mathcal{S}$ by $f_A(\vec{z}, \vec{w})(B) := \vec{z} + \vec{w} \times_e \overrightarrow{AB} = \vec{u}(B)$. Prove that f_A is linear and bijective (is one-to-one and onto).

Answer. Linearity: $f_A((\vec{z}_1, \vec{w}_1) + \lambda(\vec{z}_2, \vec{w}_2))(B) = f_A(\vec{z}_1 + \lambda \vec{z}_2, \vec{w}_1 + \lambda \vec{w}_2)(B) = \vec{z}_1 + \lambda \vec{z}_2 + (\vec{w}_1 + \lambda \vec{w}_2) \times_e \overrightarrow{AB} = \vec{z}_1 + \vec{z}_2 + \vec{z}_$ $\vec{z}_1 + \vec{w}_1 \times_e \overrightarrow{AB} + \lambda(\vec{z}_2 + \vec{w}_2 \times_e \overrightarrow{AB}) = (f_A(\vec{z}_1, \vec{w}_1) + \lambda f_A(\vec{z}_2, \vec{w}_2))(B).$

One-to-one: $f_A(\vec{z}, \vec{w}) = 0$ iff $\vec{z} + \vec{w} \times_e \overrightarrow{AB} = \vec{0}$ for all B, in particular B = A gives $\vec{z} = \vec{0}$ and then $\vec{w} = \vec{0}$. Onto: Let $\vec{u} \in \mathcal{S}$, $\vec{u}(B) = \vec{u}(A) + \vec{\omega}_e \times_e \overrightarrow{AB}$, and take $\vec{z} = \vec{u}(A)$ and $\vec{w} = \vec{\omega}_e$.

Exercise 4.9 Choose a basis $(\vec{e_i})$, write $\times_e = \times$, $\bullet_e = \bullet$, $\vec{\omega}_e = \vec{\omega}$. Let $\vec{u_1}, \vec{u_2} \in \mathcal{S}$, $\vec{u_1}(B) = \vec{u_1}(A) + \vec{\omega_1} \times \overrightarrow{AB}$ and $\vec{u}_2(B) = \vec{u}_2(A) + \vec{\omega}_2 \times \overrightarrow{AB}$. Define the screw $\langle \vec{u}_1, \vec{u}_2 \rangle$ by $\langle \vec{u}_1, \vec{u}_2 \rangle (A) = \vec{\omega}_1 \cdot \vec{u}_2(A) + \vec{\omega}_2 \cdot \vec{u}_1(A)$. Prove $\langle \vec{u}_1, \vec{u}_2 \rangle$ is

Answer. $\vec{\omega}_1 \cdot \vec{u}_2(B) + \vec{\omega}_2 \cdot \vec{u}_1(B) = \vec{\omega}_1 \cdot (\vec{u}_2(A) + \vec{\omega}_2 \times \overrightarrow{AB}) + \vec{\omega}_2 \cdot (\vec{u}_1(A) + \vec{\omega}_1 \times \overrightarrow{AB}) = \vec{\omega}_1 \cdot (\vec{u}_2(A) + \vec{\omega}_2 \cdot \vec{u}_1(A) + \vec{u}_1$ $\vec{\omega}_1 \bullet (\vec{\omega}_2 \times \overrightarrow{AB}) + \vec{\omega}_2 \bullet (\vec{\omega}_1 \times \overrightarrow{AB}), \text{ with } \vec{\omega}_1 \bullet (\vec{\omega}_2 \times \overrightarrow{AB}) + \vec{\omega}_2 \bullet (\vec{\omega}_1 \times \overrightarrow{AB}) = \det_{\vec{\varepsilon}}(\vec{\omega}_1, \vec{\omega}_2, \overrightarrow{AB}) + \det_{\vec{\varepsilon}}(\vec{\omega}_2, \vec{\omega}_1, \overrightarrow{AB})$ hence = 0, thus $\vec{\omega}_1 \cdot \vec{u}_2(B) + \vec{\omega}_2 \cdot \vec{u}_1(B) = \vec{\omega}_1 \cdot \vec{u}_2(A) + \vec{\omega}_2 \cdot \vec{u}_1(A)$, for all A, B.

Central axis 4.4

Let $(\vec{e_i})$ be a Euclidean basis. Let $\vec{u}: Dom \to \mathbb{R}^3$ be a screw; \vec{u} being affine, it can be extended to $\vec{u}: \mathbb{R}^3 \to \overline{\mathbb{R}^3}$, i.e. the domain of definition Dom of \vec{u} is extended to the whole space \mathbb{R}^3 (the material is extended with "zero density" to the whole space). Let $L_{\vec{u}}$ be the associated antisymmetric endomorphism and let $\vec{\omega}_e \in \mathbb{R}^3$ defined by $L_{\vec{u}}(\cdot) = \vec{\omega}_e \times_e (\cdot)$.

Definition 4.10 The central axis of a non constant screw is the set of central points defined by

$$Ax(\vec{u}) = \{ C \in \mathbb{R}^3 : \vec{u}(C) \parallel \vec{\omega}_e \}. \tag{4.10}$$

i.e. $\operatorname{Ax}(\vec{u}) = \{C \in \mathbb{R}^3 : \exists \lambda \in \mathbb{R}, \ \vec{u}(C) = \lambda \vec{\omega}_e \}.$

Proposition 4.11 Let \vec{u} be a non constant screw. Let $O \in \mathbb{R}^3$. Define $C_0 := O + \frac{1}{||\vec{\omega}_e||^2} \vec{\omega}_e \times_e \vec{u}(O) \in \mathbb{R}^3$, i.e. C_0 is defined by

$$\overrightarrow{OC_0} = \frac{1}{||\vec{\omega}_e||^2} \vec{\omega}_e \times_e \vec{u}(O). \tag{4.11}$$

1- $C_0 \in Ax(\vec{u})$, and

$$Ax(\vec{u}) = C_0 + \text{Vect}\{\vec{\omega}_e\}. \tag{4.12}$$

- 2- \vec{u} is constant in $Ax(\vec{u})$.
- 3- $C \in Ax(\vec{u})$ iff $C = \arg\min_{A \in \mathbb{R}^3} ||\vec{u}(A)||_e$ (i.e. iff $||\vec{u}(C)||_e = \min_{A \in \mathbb{R}^3} ||\vec{u}(A)||_e$).
- 3'- $||\vec{u}(B)||_e > ||\vec{u}(C)||_e$ for all $C \in Ax(\vec{u})$ and all $B \notin Ax(\vec{u})$.
- 4- For all $B \in \mathbb{R}^3$,

$$\vec{u}(B) = \vec{u}(C_0) + \vec{\omega}_e \times_e \overrightarrow{C_0B} \in \text{Vect}\{\vec{\omega}_e\} \oplus^{\perp} \text{Vect}\{\vec{\omega}_e\}^{\perp} \quad (\text{orthogonal sum}).$$
 (4.13)

 $\begin{aligned} \mathbf{Proof.} & \text{ 1- } \vec{u}(C_0) = \vec{u}(O) + \vec{\omega}_e \times_e \overrightarrow{OC_0} = \vec{u}(O) + \vec{\omega}_e \times_e (\frac{1}{||\vec{\omega}_e||^2} \vec{\omega}_e \times_e \vec{u}(O)) = \vec{u}(O) + \frac{1}{||\vec{\omega}_e||^2} (\vec{\omega}_e \cdot \vec{u}(O)) \vec{\omega}_e - \frac{1}{||\vec{\omega}_e||^2} ||\vec{\omega}_e||^2 \vec{u}(O) = \frac{1}{||\vec{\omega}_e||^2} (\vec{\omega}_e \cdot \vec{u}(O)) \vec{\omega}_e \text{ is parallel to } \vec{\omega}_e, \text{ thus } C_0 \in \operatorname{Ax}(\vec{u}). \end{aligned}$

Then $\vec{u}(C_0 + \lambda \vec{\omega}_e) = \vec{u}(C_0) + \vec{0}$ for all λ (because $\vec{\omega}_e \times_e \vec{\omega}_e = \vec{0}$), thus $Ax(\vec{u}) \supset C_0 + \text{Vect}\{\vec{\omega}_e\}$.

If $B \notin C_0 + \text{Vect}\{\vec{\omega}_e\}$, then $\overline{C_0B} \not\parallel \vec{\omega}_e$, i.e. $\vec{\omega}_e \times_e \overline{C_0B} \neq \vec{0}$, thus $\vec{u}(B) = \vec{u}(C_0) + \vec{\omega}_e \times_e \overline{C_0B} \in \text{Vect}\{\vec{\omega}_e\} \oplus^{\perp}$ $\operatorname{Vect}\{\vec{\omega}_e\}^{\perp}$ with $\vec{0} \neq \vec{\omega}_e \times_e \overrightarrow{C_0B}$, thus $\vec{u}(B) \not\parallel \vec{\omega}_e$, hence $B \notin \operatorname{Ax}(\vec{u})$. Thus $\operatorname{Ax}(\vec{u}) = C_0 + \operatorname{Vect}\{\vec{\omega}_e\}$.

- 2- $\vec{u}(C_0 + \lambda \vec{\omega}_e) = \vec{u}(C_0) + \vec{\omega}_e \times_e (\lambda \vec{\omega}_e) = \vec{u}(C_0) + \vec{0}$, thus $\vec{u}(C) = \vec{u}(C_0)$ for all $C \in C_0 + \text{Vect}\{\vec{\omega}_e\}$. 3- If $B \notin C_0 + \text{Vect}\{\vec{\omega}_e\}$ then $||\vec{u}(B)||_e^2 = ||\vec{u}(C_0) + \vec{\omega}_e \times_e \overline{C_0B}||_e^2 > ||\vec{u}(C_0)||_e^2$ (Pythagoras since $\vec{u}(C_0) \parallel \vec{\omega}_e$ is orthogonal to $\vec{\omega}_e \times_e \overrightarrow{C_0B}$).

$$4 - \vec{u}(B) = \overset{(4.6)}{=} \vec{u}(C_0) + \vec{\omega}_e \times_e \overrightarrow{C_0B} \text{ with } \vec{u}(C_0) \parallel \vec{\omega}_e \text{ and } \vec{\omega}_e \times_e \overrightarrow{C_0B} \perp \vec{\omega}_e.$$

Exercise 4.12 How was the point C_0 in (4.11) found?

Answer. If $\vec{u}(O) \parallel \vec{\omega}_e$ then take $C_0 = O$. Else a drawing encourages to look for a $C_0 = O + \alpha \vec{\omega}_e \times_e \vec{u}(O)$ for some $\alpha \in \mathbb{R}$ because $\overrightarrow{OC_0}$ is then orthogonal to $\text{Vect}\{\vec{\omega}_e\}$. Which gives $\vec{u}(C_0) = \vec{u}(O) + \vec{\omega}_e \times_e \overrightarrow{OC_0} = \vec{u}(O) + \vec{\omega}_e \times_e (\alpha \vec{\omega}_e \times_e \vec{u}(O)) = \vec{u}(O) + \alpha (\vec{\omega}_e *_e \vec{u}(O)) \vec{\omega}_e - \alpha ||\vec{\omega}_e||^2 \vec{u}(O)$. Hence we choose $\alpha = \frac{1}{||\vec{\omega}_e||^2}$: We get $\vec{u}(C_0) = \frac{1}{||\vec{\omega}_e||^2} (\vec{\omega}_e *_e \vec{u}(O)) \vec{\omega}_e$ parallel to $\vec{\omega}_e$, thus C_0 is in $\text{Ax}(\vec{u})$: We have obtained (4.11).

Exercise 4.13 Let \vec{u}_1 and \vec{u}_2 be two non constant screws s.t. $\vec{\omega}_{e1} + \vec{\omega}_{e2} \neq 0$. Find the axis of $\vec{u} := \vec{u}_1 + \vec{u}_2$.

Answer.
$$\vec{u}_1(B) = \vec{u}_1(O) + \vec{\omega}_{e1} \times_e \overrightarrow{OB}$$
 and $\vec{u}_2(B) = \vec{u}_2(O) + \vec{\omega}_{e2} \times_e \overrightarrow{OB}$ give $(\vec{u}_1 + \vec{u}_2)(B) = (\vec{u}_1(O) + \vec{u}_2(O)) + (\vec{\omega}_1 + \vec{\omega}_2) \times_e \overrightarrow{OB}$. Thus $\operatorname{Ax}(\vec{u}_1 + \vec{u}_2) = C + \operatorname{Vect}\{\vec{\omega}_1 + \vec{\omega}_2\}$ where $C : \stackrel{(4.11)}{=} O + \frac{1}{||\vec{\omega}_1 + \vec{\omega}_2||^2}(\vec{\omega}_1 + \vec{\omega}_2) \times_e \vec{u}(O)$.

4.5 The pitch

Let \vec{u} be a non constant screw, i.e. $\vec{u}(B) = \vec{u}(A) + \vec{\omega}_e \times_e \overrightarrow{AB}$ for all A, B with $\vec{\omega}_e \neq \vec{0}$.

Definition 4.14 The pitch of a \vec{u} is the real $h \in \mathbb{R}$ s.t., for any $C \in Ax(\vec{u})$,

$$\vec{u}(C) = h\vec{\omega}_e$$
, i.e. $h = \frac{\vec{u}(C) \cdot \vec{\omega}_e}{\omega_e^2}$. (4.14)

5 Twist = kinematic torsor = distributor

5.1 Definition

Definition 5.1 A twist (or kinematic screw or distributor)¹ is the name of the screw "The Eulerian velocity field of a rigid body".

Details: Let
$$Obj$$
 be a rigid body, P_{Obj} its particles, $\widetilde{\Phi}: \begin{cases} [t_0,T] \times Obj \to \mathbb{R}^3 \\ (t,P_{Obj}) \to p(t) = \widetilde{\Phi}(t,P_{Obj}) \end{cases}$ its motion (where $t_0,T\in\mathbb{R}$ and $t_0< T$), and $Dom_t=\widetilde{\Phi}(t,Obj)\subset\mathbb{R}^3$ its position in \mathbb{R}^3 at t . Its Eulerian

motion (where $t_0, T \in \mathbb{R}$ and $t_0 < T$), and $Dom_t = \Phi(t, Obj) \subset \mathbb{R}^3$ its position in \mathbb{R}^3 at t. Its Eulerian velocity field is the vector field $\vec{v} : \bigcup_{t \in [t_0, T]} (\{t\} \times Dom_t) \to \overline{\mathbb{R}^3}$ defined by $\vec{v}(t, p(t)) := \frac{\partial \widetilde{\Phi}}{\partial t}(t, P_{Obj})$ when $p(t) = \widetilde{\Phi}(t, P_{Obj})$.

Fix t and let $\vec{v}(t, p(t)) = ^{\text{noted}} \vec{v}(p)$. Consider a Euclidean basis $(\vec{e_i})$ and the associated Euclidean dot product $(\cdot, \cdot)_e$. The body being rigid, \vec{v} is affine and antisymmetric (is a screw): $\vec{v}(q) = \vec{v}(p) + d\vec{v}(p).\overrightarrow{pq}$ with $d\vec{v}(p)$ independent of p and $d\vec{v} + d\vec{v}^T = 0$. So, with $\vec{\omega}_e \in \mathbb{R}^3$ given by $d\vec{v}.() = \vec{\omega}_e \times_e ()$, for all $p, q \in Dom_t$,

$$\vec{v}(q) = \vec{v}(p) + \vec{\omega}_e \times_e \vec{pq}. \tag{5.1}$$

 $\vec{\omega}_e$ is the vector angular velocity, and $\omega_e := ||\vec{\omega}_e||_e$ is the angular velocity.

Then artificially extending the body to infinity with zero density: $\operatorname{Ax}(\vec{v}) = \{c \in \mathbb{R}^3 : \vec{v}(c) \mid \vec{\omega}_e\}$ is well defined, and, with $c \in \operatorname{Ax}(\vec{v})$ and $q \in Dom_t$, $\vec{v}(q) = \vec{v}(c) + \vec{\omega}_e \times_e \vec{cq}$ is an orthogonal decomposition of $\vec{v}(q)$ in $\operatorname{Vect}\{\vec{\omega}_e\} \oplus^{\perp} \operatorname{Vect}\{\vec{\omega}_e\}^{\perp}$.

Exercise 5.2 (5.1) gives the "equiprojectivity property": $\vec{v}(p).\vec{pq} = \vec{v}(q).\vec{pq}$. Prove it starting from $||\overrightarrow{p(t)q(t)}||_e = \text{constant}$ (rigid body) for all particles P_{Obj} , $Q_{Obj} \in Obj$ where $p(t) = \widetilde{\Phi}(t, P_{Obj})$ and $q(t) = \widetilde{\Phi}(t, Q_{Obj})$.

Answer. Choose a $O \in \mathbb{R}^3$. let $p(t) = \widetilde{\Phi}(t, P_{Obj})$ and $q(t) = \widetilde{\Phi}(t, Q_{Obj})$. Thus $\frac{d}{dt} \overline{p(t)q(t)} = \frac{d}{dt} \overline{Oq(t)} - \frac{d}{dt} \overline{Op(t)} = \overline{v}(t, q(t)) - \overline{v}(t, p(t))$. And $||\overline{p(t)q(t)}||_e^2 = (\overline{p(t)q(t)}, \overline{p(t)q(t)})_e = \text{constant}$, thus $\frac{d}{dt}(\overline{p(t)q(t)}, \overline{p(t)q(t)})_e = 0 = 2(\frac{d}{dt} \overline{p(t)q(t)}, \overline{p(t)q(t)})_e$, thus $0 = (\overline{v}(t, q(t)) - \overline{v}(t, p(t)))$, $\overline{p(t)q(t)})_e$ (equiprojectivity property).

5.2 Pure rotation

Definition 5.3 A pure rotation is a non constant twist \vec{v} s.t. $\exists c_0 \in \mathbb{R}^3$, $\vec{v}(c_0) = \vec{0}$; I.e.

$$\exists c_0 \in \mathbb{R}^3, \ \forall q \in \mathbb{R}^3, \ \vec{v}(q) = \vec{\omega}_e \times_e \vec{c_0 q} \quad \text{with} \quad \vec{\omega}_e \neq \vec{0}.$$
 (5.2)

(In which case $\vec{v}(q) \perp \vec{\omega}_e$ for all $q \in \mathbb{R}^3$ and $Ax(\vec{v}) = c_0 + \text{Vect}\{\vec{\omega}_e\}$).

Exercise 5.4 Fix $(\vec{e_i})$, write $\times_e = \times$ and $\vec{\omega}_e = \vec{\omega}$, let $\vec{v_1}(q) = \vec{\omega_1} \times \overline{c_1 q}$ and $\vec{v_2}(q) = \vec{\omega_2} \times \overline{c_2 q}$.

- 1- Suppose $Ax(\vec{v}_1) \parallel Ax(\vec{v}_2)$, axes disjoint, and $\vec{\omega}_1 + \vec{\omega}_2 \neq \vec{0}$. Find $Ax(\vec{v}_1 + \vec{v}_2)$ and prove that $\vec{v}_1 + \vec{v}_2$ is a pure rotation.
 - 1'- Suppose $Ax(\vec{v}_1) \parallel Ax(\vec{v}_2)$, axes disjoint, and $\vec{\omega}_1 + \vec{\omega}_2 = \vec{0}$. Prove that $\vec{v}_1 + \vec{v}_2$ is a translation.
- 2- Suppose $Ax(\vec{v}_1) \not\parallel Ax(\vec{v}_2)$ and the axes intersect at only one point O. Find $Ax(\vec{v}_1 + \vec{v}_2)$, and prove that $\vec{v}_1 + \vec{v}_2$ is a pure rotation.
- 3- Suppose $Ax(\vec{v}_1) \not\parallel Ax(\vec{v}_2)$ and the axes don't intersect. Find $Ax(\vec{v}_1 + \vec{v}_2)$, and prove that $\vec{v}_1 + \vec{v}_2$ is not a pure rotation. Give a "simple" particular $c_0 \in Ax(\vec{v}_1 + \vec{v}_2)$.

Answer. The notations tells: $c_1 \in Ax(\vec{v}_1), c_2 \in Ax(\vec{v}_2), (\vec{v}_1 + \vec{v}_2)(q) = \vec{\omega}_1 \times \overline{c_1}\vec{q} + \vec{\omega}_2 \times \overline{c_2}\vec{q}$ for all q.

¹Definition of a twist by R.S. Ball [1]: "A body is said to receive a twist about a screw when it is rotated about the screw, while it is at the same time translated parallel to the screw, through a distance equal to the product of the pitch and the circular measure of the angle of rotation; hence, the canonical form to which the displacement of a rigid body can be reduced is a twist about a screw."

12 $6. Wrench = static \ torsor$

1- Here $\vec{\omega}_2 = \lambda \vec{\omega}_1$ with $\lambda \neq -1$, thus $(\vec{v}_1 + \vec{v}_2)(q) = \vec{\omega}_1 \times (\overline{c_1 q} + \lambda \overline{c_2 q}) = (\lambda + 1)\vec{\omega}_1 \times (\frac{1}{\lambda + 1} \overline{c_1 q} + \frac{\lambda}{\lambda + 1} \overline{c_2 q})$. Hence choose $c_0 \in \mathbb{R}^3$ s.t. $\frac{1}{\lambda+1}\overline{c_1c_0} + \frac{\lambda}{\lambda+1}\overline{c_2c_0} = \vec{0}$ (barycentric point on the straight line containing c_1 and c_2): We get $\vec{v}(c_0) = \vec{0}$ and $Ax(\vec{v}_1 + \vec{v}_2) = c_0 + Vect\{\vec{\omega}_1 + \vec{\omega}_2\}$. Remark (on barycentric points): We have $\vec{c_1c_0} = \frac{1}{\lambda+1}\vec{c_1c_2}$, thus c_0 in between c_1 and c_2 iff $0 < \frac{1}{\lambda+1} < 1$, i.e. iff $\lambda > 0$, i.e. iff $\vec{\omega}_1$ and $\vec{\omega}_2$ have the same orientation.

1'- $(\vec{v}_1 + \vec{v}_2)(q) = (\vec{v}_1 + \vec{v}_2)(p) + (\vec{\omega}_1 + \vec{\omega}_2) \times \vec{pq} = (\vec{v}_1 + \vec{v}_2)(p) + \vec{0}$ for all p, q, so $\vec{v}_1 + \vec{v}_2$ is constant; Suppose $\exists q \in \mathbb{R}^3 \text{ s.t. } (\vec{v_1} + \vec{v_2})(q) = \vec{0} \text{: Hence } \vec{\omega_1} \times \overline{c_1} \vec{q} + (-\vec{\omega_1}) \times \overline{c_2} \vec{q} = \vec{0} \text{, thus } \vec{\omega_1} \times \overline{c_1} \vec{c_2} = \vec{0} \text{, thus } \vec{\omega_1} \parallel \overline{c_1} \vec{c_2} \text{, absurd because } \vec{c_1} \vec{c_2} = \vec{0} \text{.}$ the axes are parallel and disjoint. Thus $\vec{v}_1 + \vec{v}_2 \neq \vec{0}$.

2- Take $\vec{c_1} = c_2 = 0$, thus $(\vec{v_1} + \vec{v_2})(q) = (\vec{\omega_1} + \vec{\omega_2}) \times \overrightarrow{Oq}$, thus $(\vec{v_1} + \vec{v_2})(O) = \vec{0}$ and $Ax(\vec{v_1} + \vec{v_2}) = O + \text{Vect}\{\vec{\omega_1} + \vec{\omega_2}\}$. 3- Here $\vec{\omega} := \vec{\omega_1} + \vec{\omega_2} \neq \vec{0}$ and (4.11) tells that c_0 defined by $\vec{c_1} = \vec{c_0} = \frac{1}{||\vec{\omega}||^2} \vec{\omega} \times (\vec{v_1} + \vec{v_2})(c_1) = \frac{1}{||\vec{\omega}||^2} \vec{\omega} \times \vec{v_2}(c_1) = \frac{1}{||\vec$

 $\frac{1}{||\vec{\omega}||^2}\vec{\omega}\times(\vec{\omega}_2\times\overline{c_2c_1})$, i.e.

$$\overline{c_1 c_0} = \frac{1}{||\vec{\omega}||^2} \Big((\vec{\omega} \cdot \overline{c_2 c_1}) \vec{\omega}_2 - (\vec{\omega} \cdot \vec{c}_2) \overline{c_2 c_1} \Big)$$

$$(5.3)$$

is in $Ax(\vec{v}_1+\vec{v}_2)$, so $Ax(\vec{v}_1+\vec{v}_2) = c_0 + Vect\{\vec{\omega}_1+\vec{\omega}_2\}$.

In particular, choose c_1 and c_2 s.t. $\overline{c_1c_2} \perp \vec{\omega}_1$ and $\perp \vec{\omega}_2$, i.e. the segment $[c_1, c_2]$ is the shortest segment joining $Ax(\vec{v}_1)$ and $Ax(\vec{v}_2)$. Thus $\overline{c_1c_2} \in Vect\{\vec{\omega}_1, \vec{\omega}_2\}^{\perp}$ and $\overline{c_1c_2} \perp \vec{\omega}_1 + \vec{\omega}_2$. Thus

$$\overline{c_1c_0} = -\frac{\vec{\omega} \cdot \vec{\omega}_2}{||\vec{\omega}||^2} \overline{c_2c_1}, \quad \text{and} \quad \overline{c_2c_0} = \overline{c_2c_1} + \overline{c_1c_0} = (1 - \frac{\vec{\omega} \cdot \vec{\omega}_2}{||\vec{\omega}||^2}) \overline{c_2c_1}. \tag{5.4}$$

In particular c_0 is in the straight line containing c_1, c_2 . Thus $\vec{v}_1(c_0) = \vec{\omega}_1 \times \overline{c_1 c_0} = -\frac{\vec{\omega} \cdot \vec{v}_1 \cdot \vec{\omega}_2}{||\vec{\omega}||^2} \vec{\omega}_1 \times \overline{c_2 c_1}$, and $\vec{v}_2(c_0) = \vec{\omega}_2 \times \vec{c}_2 \vec{c}_0 = (1 - \frac{\vec{\omega} \cdot \underline{e} \cdot \vec{\omega}_2}{||\vec{\omega}||^2}) \vec{\omega}_2 \times \vec{c}_2 \vec{c}_1. \text{ Thus } (\vec{v}_1 + \vec{v}_2)(c_0) = (-\frac{\vec{\omega} \cdot \underline{e} \cdot \vec{\omega}_2}{||\vec{\omega}||^2} \vec{\omega}_1 + (1 - \frac{\vec{\omega} \cdot \underline{e} \cdot \vec{\omega}_2}{||\vec{\omega}||^2}) \vec{\omega}_2) \times \vec{c}_2 \vec{c}_1. \text{ And } \vec{\omega}_1$ and $\vec{\omega}_2$ are independent, thus $\vec{\omega}$ and $\vec{\omega}_2$ are independent, thus $\vec{\omega} \cdot \underline{e} \cdot \vec{\omega}_2 \neq 0$ and $(-\frac{\vec{\omega} \cdot \underline{e} \cdot \vec{\omega}_2}{||\vec{\omega}||^2} \vec{\omega}_1 + (1 - \frac{\vec{\omega} \cdot \underline{e} \cdot \vec{\omega}_2}{||\vec{\omega}||^2}) \vec{\omega}_2) \neq \vec{0},$ together with $\left(-\frac{\vec{\omega} \cdot \mathbf{e} \cdot \vec{\omega}_2}{||\vec{\omega}||^2} \vec{\omega}_1 + \left(1 - \frac{\vec{\omega} \cdot \mathbf{e} \cdot \vec{\omega}_2}{||\vec{\omega}||^2} \right) \vec{\omega}_2\right) \perp \vec{c_2c_1} \neq \vec{0}$; Thus $(\vec{v_1} + \vec{v_2})(c_0) \neq \vec{0}$, thus $\vec{v_1} + \vec{v_2}$ isn't a pure rotation.

Exercise 5.5 Prove: A twist \vec{v} is the sum of a pure rotation and a translation.

Answer. With $\vec{v}(p) = \vec{v}(O) + \vec{\omega}_e \times_e \overrightarrow{Op}$. Call \vec{v}_r the pure rotation defined by $\vec{v}_r(p) = \vec{\omega}_e \times_e \overrightarrow{Op}$ and call \vec{v}_t the translation defined by $\vec{v}_t(p) = \vec{v}(O)$. We have $(\vec{v}_t + \vec{v}_r)(p) = \vec{v}(p)$, for all p, hence $\vec{v} = \vec{v}_r + \vec{v}_t$.

6 ${ m Wrench}={ m static}\,\,{ m torsor}$

Definition 6.1

Definition 6.1 A wrench is the name given to a screw \vec{u} when, at some P_0 , \vec{u} is the moment of a force:

$$\vec{u}(P_0) = \vec{f}(P_f) \times_e \overrightarrow{P_f P_0} \quad (= \overrightarrow{P_0 P_f} \times_e \vec{f}(P_f)) \quad \in \text{Vect}\{\vec{f}(P_f), \overrightarrow{P_f P_0}\}^{\perp}, \tag{6.1}$$

where $f(P_f)$ is the vector force applied at P_f .

And the "moment arm" at P_0 is the distance between the straight line $P_f + \text{Vect}\{\vec{f}(P_f)\}$ and P_0 , i.e. the distance between P_0 and its orthogonal projection on $P_f + \text{Vect}\{\vec{f}(P_f)\}$. Drawing

This definition supposes that the domain of definition of \vec{u} is $Dom = \{P_0\}$.

First generalization: Dom can be extended to the segment $[P_0, P_f] = \{P \in \mathbb{R}^3 : \overline{P_0P} = \alpha \overline{P_0P_f}, \alpha \in \mathbb{R}^3 : \overline{P_0P} = \alpha \overline{P_0P_f}, \alpha \in \mathbb{R}^3 : \overline{P_0P} = \alpha \overline{P_0P_f}, \alpha \in \mathbb{R}^3 : \overline{P_0P} = \alpha \overline{P_0P_f} = \alpha \overline{P_0P$ [0,1], corresponding to the position of a rigid body like "the wheel nut at P_0 welded to the wrench used to unscrew it". Thus, for all $P \in [P_0, P_f]$.

$$\vec{u}(P) = \vec{f}(P_f) \times_e \overrightarrow{P_f P} \quad (\in \text{Vect}\{\vec{f}(P_f), \overrightarrow{P_f P}\}^{\perp}).$$
 (6.2)

Here $\vec{u}(P_f) = \vec{0}$ (the moment arm vanishes).

Second generalization: \vec{u} can be extended to \mathbb{R}^3 (with \vec{u} supposed affine antisymmetric). Then the resultant is $\vec{f}(P_f)$, and the axis is $P_f + \text{Vect}\{\vec{f}(P_f)\}$

Couple of forces and resulting wrench

Consider two wrenches given by at P_0 by $\vec{u}_1(P_0) = \vec{f}_1(P_{f_1}) \times_e \overrightarrow{P_{f_1}P_0}$ and $\vec{u}_2(P_{f_2}) = \vec{f}_2(P_{f_2}) \times_e \overrightarrow{P_{f_2}P_0}$. Thus, at P_0 ,

$$(\vec{u}_1 + \vec{u}_2)(P_0) = \vec{f}_1(P_{f_1}) \times_e \overrightarrow{P_{f_1}P_0} + \vec{f}_2(P_{f_2}) \times_e \overrightarrow{P_{f_2}P_0} \stackrel{\text{noted}}{=} \vec{u}(P_0). \tag{6.3}$$

12July 14, 2023 13 REFERENCES

A fundamental example: Suppose that $\vec{f_2}(P_{f_2}) = -\vec{f_1}(P_{f_1})$ and $\overrightarrow{P_{f_1}P_0} = -\overrightarrow{P_{f_2}P_0}$ and $\vec{f_1}(P_{f_1}) \perp \overrightarrow{P_{f_1}P_0}$ (drawing: P_0 is the position of a nut holding a car wheel and P_{f_1} and P_{f_2} are the ends of a lug wrench used to unscrew the nut). We get "the couple at P_0 " (expected result, drawing):

$$\vec{u}(P_0) = 2\vec{f_1}(P_{f_1}) \times_e \overrightarrow{P_{f_1}P_0} = \vec{f_1}(P_{f_1}) \times_e (2\overrightarrow{P_{f_1}P_0}) \quad (= \vec{f_1}(P_{f_1}) \times_e \overrightarrow{P_{f_1}P_{f_2}}). \tag{6.4}$$

First generalization: Dom can be extended to the segment $[P_0, P_f]$; We get, at any $P \in [P_{f_1}, P_{f_2}]$,

$$\vec{u}(P) = \vec{f_1}(P_{f_1}) \times_e \overrightarrow{P_{f_1}P} - \vec{f_1}(P_{f_1}) \times_e \overrightarrow{P_{f_2}P} = \vec{f_1}(P_{f_1}) \times_e \overrightarrow{P_{f_1}P_{f_2}} = \text{constant}.$$
 (6.5)

It is independent of P: Indeed the "moment arms" $d(P, P_{f_1})$ and $d(P, P_{f_2})$ ("one short and one long") give (6.5). Thus the screw \vec{u} is constant along $[P_{f_1}, P_{f_2}]$.

Second generalization: Dom can be extended to \mathbb{R}^3 : The screw \vec{u} is constant in \mathbb{R}^3 .

References

- [1] Ball, R. S.: The Theory of Screws: A study in the dynamics of a rigid body. Dublin: Hodges, Foster & Co. (1876)
- [3] Minguzzi M.: A geometrical introduction to screw theory. https://arxiv.org/abs/1201.4497v2

13 July 14, 2023