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Screw theory (torsor theory)

Vector and pseudo-vector representations, twist, wrench
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A screw (also called a torsor) is an antisymmetric vector field in a Euclidean setting. It is called a
twist (or a kinematic screw, or a distributor) when it is the velocity field of a rigid body motion, and
called a wrench when it is the moment of a force field.
To avoid confusions and misunderstandings, the first paragraphs are devoted to the definitions of
vectors, pseudo-vectors, vector products, pseudo-vector products, antisymmetric endomorphisms and
their representations.
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2 1. Dimension 3 vector spaces

1 Dimension 3 vector spaces

1.1 The theoretical vector space I@ and the different ]1@ in mechanics
1.1.1 Dimension 3 vector space

A dimension 3 real vector space V = (V,+,.) is a theoretical vector space (mathematical model) where
“4+” is an internal operation and “.” an external operation s.t. (V,+) is a commutative group, and A.v € V
for all A € R and ¥ € V, with the usual distributivity rules (with 1 the unitary element in R): 1.9 = ¥,
AU+ W) = AT+ A, A+ p).0= A0+ p.0, and (A\p).0 = \.(p.7), for all \,up € R and ¢,w € V.
If a basis (@;)i=1,2,3 —noted (@;) in V is chosen, then a vector 7 = Zf’zl v;d; € V is represented
(% (%
by the column matrix [¢]z := [ v |. And writing [¢]z = | v2 | means ¥ € V and ¥ = 23’:1 v; ;.
V3 V3
A bilinear form z(-,-) : V x V — R (e.g. a scalar dot product) is represented by the 3 % 3 matrix
2]z = [2(a@;,a;)] 123 =noted (g, d@;)]. Thus, with 7 = 23:1 v;@; and W = Z?:l w;d; in V, the

bilinearity of z(-,-) gives z(¥, W) = Z?,j:l viw;z(a@;, a;) = [0k .[2]z. [0z

j=

R®

and Euclidean setting

?

Affine setting: R? is our usual affine space of points, and R” is its associated vector space made of
the “bi-point” vectors AB ="°%d B_A for all A, B € R?, in which case we write B = A + AB.

1.1.2 Our usual affine space R3, and

Euclidean setting: Choose a unit of measure of length u, e.g. the metre or the foot, to be able to

build a Euclidean basis (€;);=12,3 —=noted (€;) in R?: The length of each €; is 1 in the unit u, and the
length of 3é; 4+ 4€;4+1 is 5 (Pythagoras orthogonality) in the unit u, for all ¢ = 1, 2,3, where &, := €;.

The Euclidean dot product e(-,-) : R® x R° — R associated to (€;) is the symmetric definite positive

bilinear form defined by, for all 7 = 2?21 v;€; and W = 2?21 w;€; in R”

3
e(@,@) = Y vaw; = [0 [@]e "L (7, 0). "L To @, (1.1)
i,j=1
i.e. defined by [e]e = I (identity matrix) (i.e. e(€;,€;) = d;; = (€;,€j)e = €; €, for all 4,5 =1,2,3). The
associated Euclidean norm ||.||. is given by ||¥]|e := /T « ¥
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And two vectors ¥, W € Rﬁ are Euclidean orthogonal iff ¥« @ = 0.

1.1.3 The different I@ in mechanics

In mechanics we need “a compatible dimension” for a sum to be defined: You don’t add velocities with
accelerations or with forces or with moments... Thus we define several dimension 3 real vector spaces V'
corresponding to different dimensions: V,; for the velocities, V.. for accelerations, V¢, for the forces,
Vimom for moments...

However, when a unit of measure of length u is chosen, and systematically used by all observers,

all the dimension 3 spaces using a length are abusively called R”: V¢ —noted 3 "y, —noted I@,

Vior —noted 3 "y —noted R3 (for operations relative to measures of length). This is the case for
calculations relative to screws (torsors).

1.2 The vector product associated with a basis

Definition 1.1 The vector product associated with a basis (@;) in a dimension 3 real vector space V is
the bilinear antisymmetric map X,(,-) : V. xV — V defined by, for all ¢ = Zle v;a; and W = Zf’zl w;d;
inV,

R o o o ted o
Xq (U, W) := (vows — v3wa)d1 + (vswy — viws)da + (Viwe — vown )ds N B %, W, (1.2)
i.e.
VoWs3 — V3Wa od a v w
[17 Xa ’Lﬁ]a = V3w — Vv1wWs n0:e det( 62 Vg W2 ), (13)
V1W2 — VW1 a3 vz w3
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3 1. Dimension 3 vector spaces

the formal determinant being expanded along the first column. (¥ x, @ is written ¥ A, @ in French.) In
other words, X, is defined by a; X, @;+1 = @;42 for ¢ = 1,2,3, where d4 := @1 and ds := ds.

We immediately check: X, is indeed bilinear and antisymmetric (0 X, 0 = —7 X, @).
Exercise 1.2 Define the basis (l_);) by 51 = —ds, 52 = ds, 53 = d3 (change of orientation, drawing).
Prove:
Xp = —Xq, L& TXpW=—UX,w, Yo, 0eV. (1.4)

(The definition of a vector product is basis dependent.)
Answer. b2 Xb bg = b1 = —61 = —(3:2 Xa C_ig = —b2 Xa b3, and b3 Xp b1 = bz = 62 = 63 Xa C_L'1 = —bg Xa b1, and

b1 Xp ba = bg = d3 = d1 Xq d2 = —b1 X4 b2; And X, and X, are bilinear antisymmetric, hence (1.4). n

Exercise 1.3 Let (-,")q =noted e the dot product associated to (d;), i.e. defined by (d;,d;)a = 6i; =
a; % a; for all 7, j. Check:

@ X (T %o W) = (T 0 @)T — (@ v 0)0. (1.5)
u (1117.02 — v2w1) — U3(U3w1 — 1)11,03) (23:1 uiwi)vl — (23:1 uwi)un

Answer. [@ Xq (U Xq W)]z = | us(vaws — vawz) — wr(viwe —vows) | = [ (X, wiwi)ve — (O05_, wsvi)wa | . oa
ul(v3u)1 — 1)1’!1)3) — UQ(’I)zws — U3w2) (Eizl uiwi)vg — (Zizl uﬂ)i)w3

1.3 Determinant associated with a basis

Definition 1.4 The determinant associated with a basis (@;) is the tri-linear alternated form detg :
V xV x V — R defined by
detg(dy, dz, d3) = +1, (1.6)

: " 3 R 3 o " 3 o
i.e. defined by, for all @ =", | u;@;, V=>;_;v;d; and W =), , w;d; in V,

—

detg (@, U, W) = uy (vaws — vaws) + uz(vswy — viws) + ug(viwg — vawy). (1.7)
In other words, with detys(A) the determinant of a 3 * 3 matrix A,

dety (2,7, @) := detyr([@z [z [@]a), (1.8)

—

where ([@]z [U]z [W]z) is the 3 * 3 matrix made of the columns [z, [¥]z, [W]a-

—

Remark: When (d;) is a Euclidean basis, detz(@, ¢, ) is the algebraic volume (or signed volume) of
the parallelepiped limited by the three vectors @, ¥, (in the chosen unit of measurement used to build
the Euclidean basis). And | detz(@, ¥, )| is the positive volume (or volume) of the parallelepiped.

Exercise 1.5 Let (b;) be defined by by = —a1, bo = @2, bs = ds (change of orientation, drawing). Prove:
det; = — detg (the definition of a determinant is basis dependent).

Answer. det; and det; being tri-linear alternated, det;(d1, da, d3) = det,;(fgl, 52, 53) = fdetg(l_;l, 52, 53) (123)71(12)
— detz (@1, d2, ds), thus (tri-linearity) det;(, ¥, W) = — detz (@, ¥, @) for all @, 7, w. un

1.4 Orientation of a basis

Two bases (a@;) and (I_);) have the same orientation iff deta(l;l, 52, 53) > 0 (i.e. iff dety(d, do, d3) > 0). We

-

then also say that the basis (b;) is positively oriented relatively to the basis (d;).
(Euclidean setting: Right-handed bases are usually declared to be positively oriented.)

—

In other words, with P = [P;;] the transition matrix from (a@;) to (b;), i.e. with bjle = [ P, | (the

j-th column of P) for all j: Two bases (@;) and (b;) have the same orientation iff dety(P) > 0.
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4 1. Dimension 3 vector spaces

1.5 Vector products and determinants
(1.3) and (1.7) immediately give: For all @, v,@ € V,
@ o (0 o @) = dety (@, 7, 0). (1.9)

Proposition 1.6 Let (b;) be another (-,-),-orthonormal basis (i.e. b; -al;j = 4;; for all i,j, i.e. (-,-)p =
(*s")a). Then

dety = +detg, d.e. detp(dy,dr,ds) = +1, (1.10)
Xg = Xy, Qe TxpW = iUx W, VO, €eV, '
with + iff the bases have the same orientation.
Proof. Let P := ([51]5 [52]5 [53]5) (the transition matrix from (@;) to ( 1)) We get
deta (b1, b2, b3) = detas([b1]a, [bo]a, [bs]a) = detar(P.[@1]a, P.l@s]a, P.la@s)z)
= detM(P detM([(i ] as [_)2]5, [_'3]5) = detM(P)detM( ) detM(P) (1.11)

)
)detz,(bl, b2, b3).
And dety/(P) = £1 with + iff the bases have the same orientation. Thus (1.10).
Thus (0 xp W) & 2 = dety(¥, 0, 2) = £detzg(¥,W, 2) = £(U X W) w2 = £(T x4 @) & Z for all Z (since
(,)p = (*y)a), thus ¥ xp @ = £U X, W, with + iff the bases have the same orientation. Thus (1.10). «=

= detM(P

Exercise 1.7 Let (€;) be a basis in V. Prove that ¥ X,  is a “contravariant vector”, i.e. satisfies the change of
basis formula, [ Xe W]new = P~ 1.[7 Xe Wola.

Answer. First proof: By definition a vector in V' is called a contravariant vector, and ¢ X, @ is in V| thus ¥ x. @
is contravariant.

Second proof (verification of the change of basis formla): Let (@) be the old basis and (b;) be the new
basis, and let P = P,; be the transition matrix from (@) to (b;), i.e. defined by b; = > Pijds for all j. And
let g(-,-) be a scalar dot product (a symmetric definite positive bilinear form on V). The change of basis
formulas give [0]; = P~'.[t]; for all ¥ € V, and [g]; = P".[g]a.P. And, for all @, ¥,% € V, on the one hand
g(i, 7 xe W) = [@]Z.[g]a.[F *e W]z, and on the other hand

9(i@, 7 xe @) = [al [g]5.[0 xe &) = ([@z - P™").(P" [g]a-P).[7 xe @]z = [@)z .[g]a-P.[T xe @],

hence [T X W]z = P.[T X W], i.e. [0 Xe W]z = P~".[T X W]a: It is the change of basis formula for vectors.

Third proof: @' X.w can also be defined with the Riesz representation theorem: The (-, -).-Riesz representation
vector of the linear form legg : 2 — Legz(Z) = dete(V, W, Z) is the vector éegw defined by Lezz.2 = (Zevw, 7). for all
Z€eV,and llzm —noted U X W is contravariant since a Riesz-representation vector is. n

Exercise 1.8 Recall: Two distinct Euclidean products (-,-)q and (-,-)s satisty (-,-)a = A?(,-)» where X is the
ratio of the the unit of measures (e.g. if (-, )4 is built with a metre and (-, -)3 is built with a foot then A = 0.3048).
Prove : If (@) is a (-,-)a-orthonormal basis and (b;) is a (-,-)p-orthonormal basis, then det; = +A%det; and
Xq = £AXp, with + iff the bases have the same orientation.

Answer. With the transition matrix P from (@) to (b;), i.e. P = ([51]6 [b2)a [ s]a ), we get deta(P) =
detg (b1, b2, bs) = +A* (ratio of algebraic volumes) = :t/\3det,g(51,gg,gg) thus detz = A Sdetg, with + iff the
bases have the same orientation. Thus ( W, 2)a = deta(ﬂ J2) = A3 detb(v W,2) = £X3(T xp W, D)y =

FA2 5 (T >0 W, 2)p = £A(T x4 W, 2)p, for all Z €V, thus ¥ Xq W = +AU X, W, for all 7, € V. un

¥ Xa
- o
v, w,

1.6 Basic properties

Proposition 1.9 Let (&@;) be a basis in V and ¥,%W € V. Then:
1- If ¥ X, Z = W X, Z for all Z, then ¥ = .
2- With (-, ), the associated dot product, ¥ X, W is (-, )q-orthogonal to ¥ and to .
3- If ¥ is parallel to W then v X, W = 0. 3~ If ¥ X, W # 0 then ¥ is not parallel to .
4- If ¥ is not parallel to w then v X, w # 0. 4- If ¥ X, W = 0 then v is parallel to w.
5- If ¥ is not parallel to & then (¥, W, U X, W) has the same orientation than (d;).
6- Euclidean case:||U X, W||, is the area or the parallelogram (¥, @) (in the unit chosen for (a;)).
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5 2. Antisymmeltric endomorphism and the representation vectors

0 0
Proof. 1- ¥ = ), v;d; and (1.3) give [V Xqd1]g = | vz |, similarly [@ X, d1]g = | ws |, thus vz = w3
—U2 —Wa2

and vg = wo. Similarly with ds wich gives vy = w;.

2- With detz the associated determinant, (U X, W) ¥ = detg(¥, W, ¥) = 0 since detz is alternated,
similarly (¥ X, @) , W = 0.

3- Trivial with (1.3). 3’- Contraposition

4- If ¥ is not parallel to « then let Z € V s.t. (¥U,w,Z) is a basis; Hence, detz(¥,, Z) # 0, thus
(U Xq W) o Z # 0, thus ¥ x, W # 0. 4- Contraposition.

5- deta(v,w,v Xa W) =1 (T xq W) & (T Xq W) = ||T Xq @||? > 0 since T .

6- If ¥/ is parallel to o then it is trivial (zero area). Otherwise /X, W # O thus 0 # dety (T, 0, e _) =

;s Moxaall

) (helght 1). un

(U Xq W) HU”XX‘IIL"” = ||¥ X, W||q = volume of the parallelepiped (7, w7, .

|v>< wH

2 Antisymmetric endomorphism and the representation vectors

2.1 Dimension issue and Euclidean setting

Let £(V1, V) be the space of linear maps from a vector space V; to a vector space Vs.

Continuing § 1.1. We will have to deal with linear maps L € E(Rﬁ, V) where R? is the space of
bi-point vectors (dimension [length]), and V' is the space of velocities (dimension [length]/[time]) or the
space of moments (dimension [force]x [length] = [masse|x[length|?/[time]?). Hence the linear map L is
not an endomorphism (although dim(V') = 3).

R’

and a basis (b;) € V which use
the same unit of leggch (thus L.u will give meaningful results); And we will abusively write L € L',(R?; I@),

However, for quantification, we will use a (Euclidean) basis (d;) €

instead of L € L(R”; V), and we will abusively say that L is an endomorphism.

2.2 Transpose of an endomorphism

Let V be a real vector space and L£(V;V) be the set of endomorphisms V' — V (it is a real vector
space with the usual internal addition and external multiplication). Usual notation for a linear map:
L(7) ="oted [ & hence L.(7 + Mb) = L.7 + AL.0 (distributivity notation = linearity).

Definition 2.1 Let L € £(V;V) and let (-,-), = . +. be a scalar dot product in V. The transposed of L
relative to (-, ), is the linear map L] € L(V;V) defined by, for all 7, € V,
(LT, 0)y = (6, L.3)y (= (L5,),), (2.1)
e. (L] ) g U = 0 oy (L.0) (= (L.0) oy D).

Matrix representation: Let (@;) be a basis in V. Let [L]z = [L;;] be the matrix of L relative to (&;),
and let [L]]z = [(L])i;] = the matrix of L] relative to (), i.e., for all j,

3
i=1 i
Let [g] be the matrix of (-, -), relative to (@), i-e. [g]a = [(@i, d;),] - (2.1) gives [0]%.[gla.[Ly |a-[W]; =
[0]% (L)% [g]a-[@]a for all @,, thus [g]a.[L]]a = [L]% [g]a, i-e.

L )a = 9]z [L]z -[9)a- (2.3)

In particular, if (d@;) is a (-,-), orthonormal basis, then [g]z = I, thus [L]]z = [L]}.

Euclidean setting: Useful result: If (-,-), and (-, "), are two Euclidean dot products (e.g. (-, "), built
with a metre and (-,-), with a foot) then

Lt =rr noted y 7 (Euclidean setting), (2.4)

Indeed, IX > 0 s.t. (+,)a = AN2(-, )y, thus (L10,9), = (&, L.0)s = N2(@, L.0), = N (L].0,7), =

(LY A8, 0), for all 7, € R?. So the transposed of an endomorphism in R® Euclidean doesn’t depend on
the unit of measurement (metre, foot,...) used to build a Euclidean basis.
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6 2. Antisymmeltric endomorphism and the representation vectors

Matrix representation: With (&;) is a (-, -).-Euclidean basis in V' = ]1? (so [e]e = I):
LTz =[L)F, ie. (L") =Lj Vi,j. (2.5)

Exercise 2.2 Check: The transposed map . : L € L(V;V) — (L) :== L] € £L(V;V) is linear.

Answer. ((L + AM)}.5,0), = (0, (L + AM).0)y = (@, L.0)g + NW, M%)y = (L] 0,7)g + MM, 0,7),
(L] + AM,").8, %), for all ¥, € V and X € R, gives (L + AM)L = LT + A\M,". oa

2.3 Symmetric and antisymmetric endomorphisms

Definition 2.3 Let L € £L(V;V) and let (-,-), be a scalar dot product in V.

o Lis (-,-)g-symmetric iff L; =1L, ie. (L.4W,0)y = (W, L.V),, V0,0, (2.6)
o Lis (-,-)g-antisymmetric iff L = —L, ie. (L,7), = —(&,L.7)y V,. '

Proposition 2.4 The space of (-,-),-symmetric endomorphisms is a vector space. The space of (-,-)4-
antisymmetric endomorphisms is a vector space.

Proof. (L+AM)L = LT+ \MT = (£L)+X(£M) = £(L+AM) with + iff L and M are (-, -),-symmetric
and — iff L and M are antisymmetric. Thus, vector sub-spaces of L(V; V). .

Euclidean setting: (-,-), is a Euclidean dot product; With (2.4),

e L is Euclidean-symmetric iff LT = L,

T (2.7)
e [ is Euclidean-antisymmetric iff L* = —L.
Hence if (€;) is any euclidean basis (so [g]z = A?I), (2.3) gives
e L is Euclidean-symmetric iff [L7)s = [L]z, (2.8)

e L is Euclidean-antisymmetric iff [L7]

™
I
|
=
@

2.4 Antisymmetric endomorphism and the representation vectors

Let L € E(I@,I@) Let (€;) be a Euclidean basis and (-,-). be the associated Euclidean dot product.
Suppose L is (-, -).-antisymmetric: (2.6)2 gives (L.€;, €;). = 0, thus L;; = 0 for all ¢, thus L.€; = cé5 — bés,

L.65 = —cé; + aé3 and L.€3 = béy — aés for some a,b,c € R. And the vector &, := a€y + bés + cé3 € R
immediately satisfies
LU=, X U. (2.9)
Le.
0 —c b a
[Lle=| ¢ 0 -—a and [We]e:= | b give LU =&, X0, V7€ ]R? (2.10)
—b a 0 c

NB: The representation vector &, (of L) is not intrinsic to L, because it depends on the choice of a basis
by an observer. See next exercise 2.6.

Definition 2.5 . = a€; + béy + ce3 is called the representation vector of the antisymmetric endomor-
phism L relative to the Euclidean basis (€;).

Exercise 2.6 Let (Z;) be another (-, -)c-orthonormal basis; Prove: &, = &, with + iff the bases have the same
orientation. Let (b;) be a basis s.t. (€, &;)e = A*(b;, b;). for some X > 0 (e.g. (&) is a Euclidean basis made with

the metre and (b;) is a Euclidean basis made with the foot); Prove: &, = +A&d. with + iff the bases have the
same orientation.

Answer. (1.10) gives X, = X, thus &e X ¥ = L.U = J. X, ¥ = £d. X ¥, for all ¥, thus &, = £, with + iff
the bases have the same orientation. For (b;), apply exercise 1.8. .

6 July 14, 2023



7 3. Antisymmetric matriz and the pseudo-vector representation

2.5 Interpretation (7/2 rotation and dilation)

Consider (2.9) (or (2. 10)), and let we = ||&elle = Va? + b2 + ¢?. Then define the positively oriented
Euclidean basis (b;) s.t. bg := Z=. We get (direct calculation see exercise 2.7)

0 -1 0 0 —sin(Z) 0 0
Lp=we[1 0 0] =cw.|sin(3) 0 0], Bly=we|0]. (2.11)
0 0 0 0 0 0 1

So L.7 rotates a vector ¥ = vyby +vaby € Vect{l;l, 52} through an angle § radians in the plane Vect{l_fl, 52}
and dilates by a factor w, (in particular L.gl = wegg and L.l;z = —wegl). And L.I_)}, =0.

Exercise 2.7 Give a BEuclidean basis (b;) s.t. [L]z is given by (2.11).

Answer. [b3]s = P (E) Let [b1])e \/Q;W ( gb> , 50 by is a unit vector L b3. Then choose by = bs X b,
- —ac - — - —

ie. [ba]je = mwe ( —fcb2 . Thus (b;) is a direct orthonormal basis. With P = ([b1]jz [b2]jz [b3]jz) the

transition matrix from ( ) we have [L] ; P~'[L}z.P (change of basis formula for endomorphisms), with

P~! = PT (change of orthonormal basis): We get (2.11). u

3 Antisymmetric matrix and the pseudo-vector representation

3.1 The pseudo-vector product

U1 U1
Let Msy = {| va | : v1,v2,v3 € R} be the set of real 3 % 1 column matrices. Let | vy | =m0ted [4].
U3 U3

Definition 3.1 A column matrix [0] € Ms; is also called a pseudo-vector.

O
Definition 3.2 The pseudo-vector product is the function x : Ms; x Ms; — Ms; defined by

o VW3 — V3W2 tod o U1 w1
x ([0),[@]) = | vswy —vyws | "SC [0 x [0, when [0]=|wvy | and [@]=| w2 |, (3.1
V1W2 — V2W1 U3 w3
O
and the column matrix [¢] X [@] is called the pseudo-vector product of [¢] and [w].

O
Remark 3.3 Msj; being a vector space, the pseudo-vector product X can also be defined to be the vector
1 0
o = _ -
product X := xg in Ms;, where ([E;]) is the canonical basis in My, i.e. [E1]:= [ 0 |, [Es] := | 1
0 0
0
and [E3] := | 0 | (three column matrices), the unit 1 being the neutral element of the multiplication
1
in R. This unit 1 is not linked to any “unit of measurement”: It is theoretical. And a “Euclidean basis”
is meaningless in Ms;. u

3.2 Antisymmetric matrix and the pseudo-vector representation

Let M € Ms3 be an antisymmetric matrix, so there exists a,b,c € R s.t.

0 —c b - a
M=|c¢ 0 —-a], andlet w=1|5b], (3.2)
-b a O c

We immediately get, for all [¢] € M3y,

M = &% [7] | (3.3)

The column matrix (the pseudo-vector) & € Mj; is called the pseudo-vector representation (column
matrix representation) of the matrix M.
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8 4. Screw (torsor)

3.3 Pseudo-representation vectors of an antisymmetric endomorphism

Let (€;) be a Euclidean basis and (-,-). its associated Euclidean dot product. Let L € E(H@,Rﬁ) be
(v, -)e-antisymmetric. Then (2.9) immediately gives, for all [v] € M3y,

O
[L)o]7] = @ X [f] where & :=[@.]e, (3.4)
and where @ should be written 86 since it depends on the basis (€;) used to define [L]z (depends on

the chosen unit of measurement used to build the Euclidean basis (€;)). The matrix & is called the
pseudo-representation vector of L relative to (€;).

4 Screw (torsor)

4.0 Reminder

e Let Dom be an open set in R? and let i : { ) } (so Dom is the domain of definition of @

A —ud(A
e.g. the position in space of some material at some time t). The function 4 is differentiable at A € Dom
iff there exists Lz(A) € L(R?,R?) (linear) s.t. @(B) = 4(A) + L;L(A)ﬁ + 0(||/@H) near A (first order
Taylor expansion). In which case Lz(A) ="°%d di(A), called the differential of @ at A.

e i : Dom — R? is affine iff there exists Lz € E(H?;R ) s.t., for all A € Dom and B near A,
ii(B) = @(A) + Ly. AB. (4.1)

Ly is called “the associated linear map” with #. Thus « is differentiable in Dom, and, at any A, its
differential Ly(A) = di(A) ="oted g =noted [ is independent of A. (Here the first order Taylor
expansion reads @(B) = @(A) + dit. AB + o(||AB||) with o(||AB||) = 0.)

Dom — Dom x I@
A = @A) := (A, id(A))

being a “pointed vector at A”, or “a vector at A”. Drawing: #(A) has to be drawn at A, nowhere else. To

e A vector field in R? is a function @ : { }, the couple @(A) := (A, (A))

compare with a vector ¥ € ]R? which can be drawn anywhere (also called a free vector).

The sum of two vector fields %Z, @ : Dom — R? and the multiplication by a scalar X\ are defined by, at
any A € Dom, _ B _
U(A) +wW(A) = (A, u(A) + W(A)), and Ni(A) = (A, i(A)) (4.2)

(usual rules for “vectors at A”). N
If there is no ambiguity then, to lighten the notations, @(A) ="°%*d F(A) (pointed vector).
The differential of a vector field @ : Dom — Dom x R? at a point A is the “field of endomorphisms”
di : Dom — Dom X L’(Rﬁ; Rﬁ) defined by diu(A) = (A, du(A)) (an endomorphism at A).
Dom — Dom X I@

e An affine vector field i : ~
A = d(A) = (AU(A))

} is a vector field s.t. @ : Dom — R? is affine.

4.1 Definition

Definition 4.1 A screw (a torsor) is a Euclidean antisymmetric affine vector field, i.e. a function

~ {Dom —>D0m><]R?

a: ~ s.t. @:Dom x ]1@ is affine antisymmetric. (4.3)
A = d(A) = (A, d(A))

To lighten the notations 5’(/1) =noted (A (pointed vector at A). So, for all A, B € Dom:

w(B) =u(A) + L:AB  where L;7 = —Lg| (4.4)

w(A) is called the moment of the screw @ at A (or moment of the torsor @ at A).
If @ =0 then @ is a degenerate screw (a degenerate torsor).
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9 4. Screw (torsor)

Exercise 4.2 Let S be the set of the screws @ : Dom — ]Ii? Prove: S is a vector space, and the map

{5 »c(@?;@?)}. .
£ is linear.
i — L(U) = Lg

Answer. If 41,142 € S and A € R then @;+A\i> is affine antisymmetric: Indeed, at B, (d1+Aid2)(B) = 41(B) +
Niia(B) = (i1 (A)+ Ly, AB)+ A(iia(A)+ Ly, . AB) = (it +Nii2) (A)+ (Lz, +ALa, ). ADB with Ly, +ALg, antisymmetric
since Ly, and Ly, are; Thus u1+Au> is affine and Lg, yaa, = L, +ALg, is the associated linear function. Thus
K(ﬁl-l-)\ﬁg) = Lg1+)\g2 = Lgl-f—AL,jz = Z(’Jl) + )\Z(L_Lé) (linearity). un
4.2 Constant screw

Definition 4.3 A constant screw @ is a non degenerate screw (@ # 0) s.t.

VA, B € Dom, a(A) = @(B). (4.5)

4.3 Euclidean setting: Resultant vector and resultant (pseudo-vector)

Euclidean setting: Euclidean basis (€;) in Rﬁ, associated Euclidean dot product (-,-). (needed to define
the transposed of a linear map), associated vector product X. (needed to represent an antisymmetric
endomorphism with a vector).

0 —c b

Consider a screw @ : Dom — R3, given as in (4.4). With [Lzle= | ¢ 0 —a | and [&c]z =
b a O

¢ O

b | =w, cf. (2.10), we get, for all A, B € Dom,

c
O

@(B) = @(A) + . % AB, ie. [@(B)s = [@(A)]s+ & X [AB]e. (4.6)

Definition 4.4 The vector &, € I@? is the resultant vector of the screw @ relative to (€;).

The vector reduction elements at A € Dom are the vectors &, € Rﬁ and @(A) € Rﬁ, often written as

—

the couple of vectors (i, @(A)) =noted <ﬁc(u2)) (relative to (&;)).
Definition 4.5 The pseudo-vector (the matrix) &= [Je]z is the resultant of the screw @ relative to (€;).

The reduction elements at A € Dom are the pseudo-vectors o = [Celz € M5y and [©(A)]z € Msy,
O

often written as the couple of matrices (8, [@(A)]z) =noted w (relative to (€;)).

[i(A)]z
NB: Recall: The representation vector &, (of Lgz) is not intrinsic to Lz, because it depends on the

choice of a basis by an observer, cf. exercise 2.6. Thus the pseudo-vector w is not intrinsic to Lz either.

Remark 4.6 (4.6) is sometimes abusively written @(B) = @(A) + & x AB (no reference to any basis)
which causes misunderstandings and confusions between vectors and pseudo-vectors (matrices). un

Exercise 4.7 Let @ be a screw. For all A € R and A, B € R?, prove:

@A + o) = @(A), (4.7)

U(B) e e = U(A) « e, thus = constant, called the screw invariant, (4.8)

Al is the vector invariant, and
e e

€1
©
©

@(B) AB = @(A) AB, called the equi-projectivity property. (4.9)

Answer. Z = A+ \@. gives A2 = \@e, thus @(Z) =49 G(A) + Ge xe (AGe) = @(A) + 0, ie. (4.7).
Then @(B) =*% @(A) + &. . AB and @, x. AB orthogonal to . and AB give (4.8)-(4.9). un
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10 4. Screw (torsor)

Exercise 4.8 Choose a basis (€;) (and S is the set of screws). Let A be fixed and define the function f4 :
(z,w) € Hi? Xe Hi? — U4 = fa(Z,7) € S by fa(2,W)(B) := Z+ W AB = #(B). Prove that fa is linear and
bijective (is one-to-one and onto).

—_ =

Answer. Linearity: fa((Z1,w1) + A(Z2,W2))(B) = fa(Zi+AZs, Wi+AWa)(B) = Zi4+AZ + (Wi+AWa2) Xe AB =
B+ X AB + NZo+i xe AB) = (fa(Z1, 1) + Ma(Z2,72)) (B).
One-to-one: fa(Z,w) =0 iff Z+ @ X « AB = 0 for all B, in particular B = A gives Z =0 and then @ = 0.
Onto: Let @ € S, 4(B) = t4(A) + Te Xe ﬁ and take Z = @(A) and @ = .. .

I
—

w

—

Exercise 4.9 Choose a basis (€;), write Xe=x, =+, Je=@. Let i1
U = ug(A) + o e U1 (A) Prove <’lf1, ’U:Q) is

tUz2(B) = ta(A) + 2 X AB. Define the screw (i1, t2) by (U1, U2)(A)
constant.

Answer. (4_.51 O'E:Q(B)—FL«_}Q 0ﬁ1(B) :u_ﬁl 0( 2(A)—|—w2 ><14_B) +w2 . (ul(A —|—w1 Xﬁ 70.)1 "(_l: (A)—|—w2 0U1 )
w01 0(032 X z@) + o e ((.31 X A ) with @1 0((.02 X zﬁ) + (g e (UJ1 X A ) = dete(wl,wQ,ﬁ) + detz WQ,wl,?)

hence = 0, thus (,31 . ﬁz(B) + (:52 . U1(B) = (:51 . u2(A) + (I)'Q . ﬁl(A), for all A,B. [ 1]

@y € S, @ (B) = @1 (A) + & x AB and
10

+

4.4 Central axis

Let (€;) be a Euclidean basis. Let @ : Dom — I@?

i : R3 — R? | ie. the domain of definition Dom of @ is extended to the whole space R? (the material is
extended with “zero density” to the whole space). Let Lz be the associated antisymmetric endomorphism

and let @, € R® defined by Ly.() = G, xe ().

be a screw; @ being affine, it can be extended to

Definition 4.10 The central axis of a non constant screw is the set of central points defined by
Ax(@) = {C € R? : @(C) || e} (4.10)
ie. Ax(i0) = {C € R?*: INER, @(C) = A}

Proposition 4.11 Let i be a non constant screw. Let O € R3. Define Cy := O + 5. szc % 4(0) € R?,
i.e. Cy is defined by

1
O—C'S = Wﬁe Xe U(0). (4.11)
1- Cy € Ax(@), and
Ax(@) = Co + Vect{d.}. (4.12)

2- i is constant in Ax(i).

3- C € Ax(u) iff C = argmin gcgs ||@(A)||e (i-e. iff ||@(C)||e = mingegs ||T(A)]]e)-
3~ |@(B)||e > ||u(C)||e for all C € Ax(w) and all B ¢ Ax(1).

4- For all B € R?,

U(B) = 4(Co) + De Xe C’oﬁ € Vect{@.} @+ Vect{@.}*- (orthogonal sum). (4.13)

Proof 1- @(Cop) = U(O) + e X 0Cj = U(0) + de Xe (Wcﬁe X w(0)) = u(0) + IIGiIIZ (De & U(0))de —
IIwe BT |G| [2T@(0) = W(d)’e « 4(0))d, is parallel to ., thus Cy € Ax().

Then @(Cy + A&.) = @(Cy) + 0 for all X (because @, Xe G = 0), thus Ax(@) D Cy + Vect{, }.
IftB¢ C’o—i—Vect{we} then CTB> N De, 1. De xeﬁ £ 0, thus 4(B) = 4(Cp)+we xem € Vect{@. } ot
Vect{@, }+ with 0 # &, X, m thus w(B) f &e, hence B ¢ Ax(a). Thus Ax(d) = Cp + Vect{d.}.
2- 4(Co + Ade) = U(Cp) + We Xe (AJe) = U(Cop) + 0, thus @(C) = u(Cy) for all C' € Cy + Vect{d,}.
3-If B ¢ Co+ Vect{@.} then ||@(B)||?> = ||i(Co) + &e Xe Cﬁ“i > ||@(Co)|)? (Pythagoras since
u(Cy) || Je is orthogonal to &, x. CoB).
4 @(B) =49 §(Cy) + e % CoB with #(Co) || Ge and Ge e CoB L @e.

Exercise 4.12 How was the point Cy in (4.11) found?

Answer. If 4(O) || &e then take Co = O. Else a drawing encourages to look for a Cyp = O + a@. X €(O)
for some a € R because OCj is then orthogonal to Vect{@.}. Which gives @(Co) = u(O) + de Xe OCH =
@(0) + Be Xe (aBe % @(0)) = @(0) + a(Fe « @(0))Te — a||@.||*@(0). Hence we choose a = lwiHQ: We get

@(Co) = m(&;’e « @(0))d. parallel to &, thus Co is in Ax(%): We have obtained (4.11). un

Exercise 4.13 Let @; and @2 be two non constant screws s.t. @1 + o # 0. Find the axis of @ := @ +1ia.
Answer. ﬂl(B) = '17:1 (O) + (:.551 Xe (ﬁ and ﬁQ(B) = ﬁQ(O) + (4_.552 Xe ()_B) give (ﬁ1+ﬂ2)(3) = (ﬁl (O) + 7__/:2(0)) =+
1
(@1+@2) xe OB. Thus Ax(@1+i2) = C + Vect{@1+@2} where € : “270 + m(@ﬁ@) Xe w(0).
1 2
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11 5. Twist = kinematic torsor = distributor

4.5 The pitch
Let @ be a non constant screw, i.e. @(B) = @(A) + Je Xe AB for all A, B with &, # 0.

Definition 4.14 The pitch of a @ is the real h € R s.t., for any C € Ax(4),

i(C) v @e

W(C) = hie, e h=—"5
e

(4.14)

5 Twist = kinematic torsor = distributor

5.1 Definition

Definition 5.1 A twist (or kinematic screw or distributor)! is the name of the screw “The Eulerian
velocity field of a rigid body”.

[to, T] x Obj — R?

~ (t, Poj) — p(t) = ®(t, Poy)
motion (where to,T € R and ty < T), and Dom; = ®(t, Obj) C R? its position in R? at t. Its Eulerian
velocity~ﬁeld is the vector field o' : U, ey, 7 ({t} x Domy) — R® defined by (¢, p(t)) = 92 (¢, Poyj) when
p(t) = @(t, Poyy).

Fix ¢ and let @(t, p(t)) ="°%d F(p). Consider a Euclidean basis (
product (-,-).. The body being rigid, ¥ is affine and antisymmetric

Details: Let Obj be a rigid body, Foy its particles, P : { its

I

o

;) and the associated Euclidean dot
is a screw): #(q) = @(p) + di(p).pq

—

with d@(p) independent of p and d7 + doT = 0. So, with &, € R? given by dv.() = de X, (), for all
p,q € Domta

(q) = U(p) + e Xe DY (5.1)
We is the vector angular velocity, and w, := ||&.||. is the angular velocity.

Then artificially extending the body to infinity with zero density: Ax(7) = {c € R® : ¥(c) || &} is
well defined, and, with ¢ € Ax(¥) and ¢ € Domy, ¥(q) = ¥(c) + &e %e ¢ is an orthogonal decomposition
of ¥(q) in Vect{@.} &+ Vect{s.}*.

Exercise 5.2 (5.1) gives the “equiprojectivity property”: ¥(p).pg = 9(q).pq. Prove it starting from llp(®)q()]|e =

constant (rigid body) for all particles Foy, Qoy € Obj where p(t) = ®(t, Poy) and q(t) = ®(t, Qoy ).

Answer. Choose a O € R%. let p(t) = ®(t, Poy) and q( ) = ®(t,Qoy). Thus —p(t) j = 20q(t) Op( j
(t q(t )) — u(t, p( ) And Hp() @l = (p(t 5 q (t))e = constant, thus f(p(t S»P 5
dtp i,p b e, thus 0 = (U(¢, q(t)) — ) (equiprojectivity property). .

5.2 Pure rotation

—

Definition 5.3 A pure rotation is a non constant twist @ s.t. Icg € R?, #(cg) = 0; Le.
Jep € R3, Vg € R®, #(q) = @e Xe @ with &, # 0. (5.2)
(In which case 7(q) L &, for all ¢ € R? and Ax(%) = co + Vect{,}).

Exercise 5.4 Fix (&), write x. = x and J. = d, let ¥1(q) = &1 x &1¢ and T2(q) = &2 X 2.

1- Suppose Ax(71) || Ax(@2), axes disjoint, and & +@s # 0. Find Ax(v1+v2) and prove that U142 is a pure
rotation.

1- Suppose Ax(71) || Ax(#2), axes disjoint, and & +@2 = 0. Prove that @14 is a translation.

2- Suppose Ax(71) }f Ax(U2) and the axes intersect at only one point O. Find Ax(¥)+%2), and prove that o)+
is a pure rotation.

3- Suppose Ax(71) }f Ax(¥2) and the axes don’t intersect. Find Ax(01+%2), and prove that ©1+%5 is not a pure
rotation. Give a “simple” particular ¢y € Ax(T1+2).

Answer. The notations tells: ¢ € Ax(%), c2 € Ax(Ts), (V1+72)(q) = &1 x &1¢ + &2 x &3¢ for all q.

IDefinition of a twist by R.S. Ball [1]: “A body is said to receive a twist about a screw when it is rotated about the
screw, while it is at the same time translated parallel to the screw, through a distance equal to the product of the pitch
and the circular measure of the angle of rotation; hence, the canonical form to which the displacement of a rigid body can
be reduced is a twist about a screw.”
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1- Here @y = A&1 with X # —1, thus (71472)(q) = &1 X (€1¢ + A\eaq) = (A+1)@1 X (53581¢ + 53762¢)- Hence

choose ¢p € R? s.t. A—Hclc3 + )\—0—1020 = 0 (barycentric point on the straight line containing ¢; and c): We get

#(co) = 0 and Ax(#+12) = co + Vect{@1+@s}. Remark (on barycentric points): We have &7e6 = 1 cics, thus
co in between ¢; and ¢z iff 0 < %H < 1,ie. iff A >0, i.e. iff ¥; and &2 have the same orientation.

- (01+02)(q) = (41+02)(p) + (G1+d2) X ]ﬁ (V1412)(p) + 0 for all p, q, so U1+ is constant; Suppose
g € R® s.t. (1 +12)(q) = 0: Hence &1 x G+ (—&1) x &2¢ = 0, thus &1 x &ies = 0, thus 1 || &7¢3, absurd because
the axes are parallel and disjoint. Thus @+ # 0.

2- Take 0176270, thus (U1—|—U2)( ) (wl—l—wz) X Oq, thus (U1+U2)(O) and A}{(Ul—‘y-ﬁz) = O+Vect{@’1+£2}.

1 —

3- Here & := &1+ds # 0 and (4.11) tells that co defined by ¢1¢g = TEEe X (V1412) (1) = Hoﬁl\@a} X (1) =
H(DlHQLD‘ X (&2 x &z¢1), i.e
1 =
i = = (@« et — (@ @2)ezet) (5.3)

is in Ax(01412), so Ax(th+72) = co + Vect{@d1+w&2}.
In particular, choose c¢1 and ¢z s.t. &1¢5 | @1 and L @o, i.e. the segment [c1, 2] is the shortest segment joining
Ax(?1) and Ax(%). Thus &r¢s € Vect{o?)’l,u')'g}l and &1¢3 L &14+@s. Thus

g = —%020 , and &) = Gzct + Gics = 1- %)0203. (5.4)

@ @
In particular co is in the straight line containing ci,ce. Thus #1(co) = &1 X Gics = @H:;Ifz @1 x &et, and
?72(00) = (9 X 3¢} = (1 — %)(52 X CQC%. Thus (1714—’172)(00) = ( LT‘:':“‘?wl + ( — %)(ﬁ ) CQ_C{ And &

and & are independent, thus & and &2 are independent, thus & « &2 # 0 and (— WH.G\T;? &+ (1 — °T‘° H“f Vo) # 0,
together with (— Sebais 4 (1- ‘3?7‘7’2)&52) 1 Gt # 6; Thus (t142)(co) # 6, thus @1 +7> isn’t a pure rotation. sm

NG la[?

Exercise 5.5 Prove: A twist ¥ is the sum of a pure rotation and a translation.

Answer. With ¢(p) = 9(0) + Je Xe O_;): Call ¥, the pure rotation defined by ¥ (p)

O and call U; the
translation defined by v:(p) = ¥(O). We have (¢; + ¥,-)(p) = 9(p), for all p, hence ¢ T

@1

7 +
6 Wrench = static torsor

6.1 Definition

Definition 6.1 A wrench is the name given to a screw i when, at some Py, @ is the moment of a force:
. o o " N
W(Py) = F(P) % PPy (= BB} % f(By)) € Veet{ f(By), BP}}, (6.1)
where f (P) is the vector force applied at P;.
And the “moment arm” at P is the distance between the straight line Pr + Vect{ f (Bc)} and Py, i.e.
the distance between Py and its orthogonal projection on P + Vect{f(P)}. Drawing.

This definition supposes that the domain of definition of @ is Dom = {P,}.

First generalization: Dom can be extended to the segment [Py, P] = {P € R3 : BP = aBP , o€
[0, 1]}, corresponding to the position of a rigid body like “the wheel nut at Py welded to the wrench used
to unscrew it”. Thus, for all P € [Py, Ff],

@(P) = f(B) % BP (€ Vect{f(P;), B P}*). (6.2)

Here @(P;) = 0 (the moment arm vanishes).

Second generalization: @ can be extended to R3 (with @ supposed affine antisymmetric). Then the

—

resultant is f(]—}), and the axis is Py + Vect{f(FP;)}

6.2 Couple of forces and resulting wrench

Consider two wrenches given by at Py by @, (Py) = f1(Pr,) xe Pr, Po and @2 (Pr,) = fa(Pr,) %e Py, By. Thus,
at Po,

) —— noted

(@1+02)(Po) = J(Br) e P Py + Ja(Br) xe PPy " i(Ry). (6.3)
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A fundamental example: Suppose that fa(Pr,) = —fi(B},) and Py, Py = — P, Py and f1(P;,) L Py, Py
(drawing: Py is the position of a nut holding a car wheel and Py, and P}, are the ends of a lug wrench
used to unscrew the nut). We get “the couple at Py” (expected result, drawing):

. " N N - SN
u(Fy) = 2/1(Fr,) %e B Po = fi(Fr) %e (2B, Po) - (= f1(Bp) e By Bp)- (6.4)

First generalization: Dom can be extended to the segment [Py, Ff|; We get, at any P € [F,, FP,],
( ) fl ‘Pfl XGP I fl }Dfl XGP P= fl ‘Pfl Xe Pfl‘sz fconstant (65)

It is independent of P: Indeed the “moment arms” d(P, P;,) and d(P, Fy,) (“one short and one long”)
give (6.5). Thus the screw  is constant along [P, , Py,].

Second generalization: Dom can be extended to R?: The screw 4 is constant in R3.
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